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9-14 Graph cach function over the specified interval. Then use
simple area formulas from peometry to find the area function
A(x) that gives the area between the graph of the specified func-
tion f and the interval [a, x]. Confirm that A’(x) = f(x) in every
case.

9. fx)=3; [a.x] =[1,x]
10. fix) =5; [a,x] =[2.4]
11 f(x) = 2x+ 2; [a,x] = [0,x]
12, f(x) =3x—3; [a,x] = [1,1]
13. f) =2x+ 2; [a,x] = [1,1]
14, f(x) = 3x—3; [a,x] = [2,1]

15-18 TrueFalse Determine whether the statement is true or

false. Explain your answer.

15. If A(n) denotes the area of a regular n-sided polygon in-
scribed in a circle of radius 2, then limy, o, A(n) = 27

16. If the area under the curve y = x” over an interval is ap-
proximated by the total area of a collection of rectangles,
the approximation will be too large.

17. If A(x) is the arca under the graph of a nonnegative contin-
wous fimetion £ over an interval [a, x], then A’(x} = ().

18, If A(x) is the arca under the graph of a nonnegative contin-
uous function f over an interval [a, x], then A(x) will be a
continous function.

FOCUS ON CONCEPTS

19. Explain how to use the formula for A(x) found in the
solution to Bxample 2 to determine the area between
the graph of y = x? and the interval [3, 6].

20. Repeat Exercise 19 for the interval [—3,9].

21, Let A denote the area between the graph of f(x) = /x
and the interval [0, 1], and let B denote the area between
the graph of {x) = x” and the interval [0, 1]. Explain
geometrically why A+ B = 1.

22, Let A denote the area between the graph of f(x) = 1/x
and the interval [1,2], and let B denote the arca be-
tween the graph of f and the interval [%,1]. Explain
geometrically why A = B.

23-24 The area A(x) under the graph of f and over the interval

[a, x] is given. Find the function f and the value of a.

23, Ax)=x">—4 24, A)=x>—x

25, Writing Compare and contrast the rectangle method and
the antiderivative method.

26. Writing Suppose that f is a nonmegative continuous func-
tion on an interval [a, b] and that g(x) = fx) 4 C, where
C is a positive constant. What will be the area of the region
between the graphs of f and g?

V3

v/ QUICK CHECK ANSWERS 4.1 1. @) o1+

2
22 39 4.A(x)=%;A’(x)=%=x=f(x) 5. cosx+1

E THE INDEFINITE INTEGRAL

In the last section we saw how antidifferentiation could be used to find exact areas. In this
section we will develop some fundamental results about antidifferentiation.

I ANTIDERIVATIVES

42,1 DEFINITION A function F is called an antiderivative of a function f on a
given open interval if F/(x) = f(x) for all x in the interval.

For example, the function F(x) = %x3 is an antiderivative of f(x) = x? on the interval
(—co, +oc0) because for each x in this interval

Fl(x) = ‘% [%x”] =x?=fx)

However, F(x) = %xa is not the only antiderivative of f on this interval. If we add any
constant C to %xa, then the function G(x) = %x3 + C is also an antiderivative of f on

(—co, +00), since

G'(x) = dix 323+ C] =2 +0=f
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In general, once any single antiderivative is known, other antiderivatives can be obtained
by adding constants to the known antiderivative. Thus,

%xa, %x’ +2, %13 —5, %x’ +2
are all antiderivatives of f(x) = x2.

It is reasonable to ask if there are antiderivatives of a function f that cannot be
obtained by adding some constant to a known antiderivative F. The answer is no since
Theorem 3.8.3 tells us that if two functions have the same derivative on an open interval,
then the functions differ by a constant on the interval. The following theorem summarizes

these observations.

4,22 THEOREM If F(x) is any antiderivative of f(x) on an open interval, then
for any constant C the function F(x) + C is alse an antiderivative on that interval.
Moreover, each antiderivative of f(x) on the interval can be expressed in the form
F(x) + C by choosing the constant C appropriately.

N THE INDEFINITE INTEGRAL
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Reproduced from C. I. Gerhardt’s “Briefwechsel von
G. W. Leibniz mit Mathematikern (1899)”.
Extract from the manuscript of Leibniz
dated October 29, 1675 in which the
integral sign first appeared (see yellow
highlight).

The process of finding antiderivatives is called antidifferentiation or integration. Thus, if

d
2P =f(x) M

then infegrating (or antidifferentiating) the function f(x) produces an antiderivative of the
form F(x) + C. To emphasize this process, Equation (1) is recast using infegral notation,

j fodx=F(x) +C @

where C is understood to represent an arbitrary constant. Tt is important to note that (1)
and (2) are just different notations to express the same fact. For example,

. - d s 2
jxdx —x + C is equivalent to ‘Tx[ix]=x

Note that if we differentiate an antiderivative of f(x), we obtain f(x) back again. Thus,

d
- [ [ 100 d] = f)

The expression [ f(x)dx is called an indefinite integral. The adjective “indefinite”
emphasizes that the result of antidifferentiation is a “generic” function, described only
up to a constant term. The “elongated s” that appears on the left side of (2) is called an
integral sign,” the function f(x) is called the infegrand, and the constant C is called the
constant of integration. Equation (2) should be read as:

(3

The integral of f(x) with respect to x is equal to F(x) plus a constant.

The differential symbol, dx, in the differentiation and antidifferentiation operations
F11 amd [11as

*This notation was devised by Leibniz, Tn his early papers Leibniz used the notation “omn.” (an abbreviation for
the Latin word “omnes”™) to denote integration. Then on October 29, 1675 he wrote, “Tt will be useful to write
J for onm., thus | ! for omm. {. . ..” Two or diree weeks later he refined the notation further and wrote [ [ ] dx
rather than | alone. This notation is s0 useful and so powerful that its development by Leibniz nust be regarded
as a major milestone in the history of mathematics and science.
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serves to identify the independent variable. If an independent variable other than x is used,
say ¢, then the notation must be adjusted appropriately. Thus,

d
SIFO1=f0 and f Ryt = F(i) +C
are equivalent statements. For simplicity, the dx is sometimes absorbed into the integrand.
For example,
/ 1dx  can be written as / dx

1
/—zdx can be written as -/.d—;
x x

N INTEGRATION FORMULAS
Integration is essentially educated guesswork—given the derivative f of a function F, one
tries to guess what the function F is. However, many basic integration formulas can be ob-
tained directly from their companion differentiation formulas. Some of the most important
are given in Table 4.2.1.

Table 4.2.1
INTEGRATION FORMULAS
DIFFERENTIATION FORMULA INTEGRATION FORMULA DIFFERENTIATION FORMULA INTEGRATION FORMULA
1. %,[x] =1 fdx =x+C 5. %[mn x] = sec?x fsccz.r dx =tanx + C
r+1 r+1 ;
2. (—'f[r ]=.\" (r=-—1) _t"d.l’:li-&-C(r:: —-1) 6. i[—colx] = csc2x csclxdy = —cotx+ C
dx Lr+1 r+1 dx
3 d(_jr[sin x] =cosx fcosxdx =sinx+ C s %[scc Xx] =secxtanx [sec xtanxdx =secx + C
4, ;—i[fcos x] =sinx fsinxa’x =—cosx+ C 8. %__[fcsc_r] = CSc x cot x fcsc xcotxdx =—cscx+ C

» Example 1 The second integration formula in Table 4.2.1 will be easier to remem-
ber if you express it in words:

To integrate a power of x (other than —1), add 1 to the exponent and divide by the new

exponent.

Here are some examples:
Formula 2 in Table 4.2.1 is not applica- 3
ble to integrating x~1; we will see how 2 _ X T
to integrate this function in Chapter 6. fx dx = 3 +C B
4
X
./xadx iir— + C r=3
4
1 x3+L
—dx= [xPdx= + +C =5
/ x5 —5+1 axt
1
i xt! 2.3 2
/ﬁdx—fxz =l—+1+C=§x1+C=§(\/)_:)3+C r=41
2

[ PROPERTIES OF THE INDEFINITE INTEGRAL
Our first properties of antiderivatives follow directly from the simple constant factor, sum,
and difference rules for derivatives.
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42,3 THEOREM Suppose that F(x) and G(x) are antiderivatives of f(x) and g(x),
respectively, and that c is a constant. Then:

(@) A constant factor can be moved through an integral sign; that is,
[ cf(x)dx = cF(x) + C
(b) An antiderivative of a sum is the sum of the antiderivatives; that is,
[ [f(x) + g)]dx = F(x) + G(x) + C

(c) An antiderivative of a difference is the difference of the antiderivatives; that is,

/lf(x) —8)]dx = F(x) - G(x) + C

PROOF  In general, to establish the validity of an equation of the form
jh(x)dx =Hx)+C

one must show that d
o [H(x)] = h(x)

We are given that F(x) and G(x) are antiderivatives of f(x) and g(x), respectively, so we
know that d — 4 d _
E[ )] =fx) an Ix[G(x)] =g(x)

Thus, d d
ch[CF(x)] = CE[F )] = cf(x)

d d d
ZlF @)+ Gl =  [F@1+ FIGx)] =fx) + 8(x)

d d d
ZlF @) — Gl = L [F@] — ZIGx)] =fx) — 8(x)

which proves the three statements of the theorem. B
The statements in Theorem 4.2.3 can be summarized by the following formulas:

[cf(x) dx — ¢ /f(x) dx 4
[ [f0x) + g0 dx = / o de + [ g(x)dx ®)
[ [f(x) — )] dx = / e [ 20 dx ©

Howeyver, these equations must be applied carefully to avoid errors and unnecessary com-
plexities arising from the constants of integration. For example, if you use (4) to integrate

2x by writing )
f2xdx=2fxdx=2(%+0) —x?+2C

then you will have an unnecessarily complicated form of the arbitrary constant. This kind
of problem can be avoided by inserting the constant of intepration in the final result rather
than in intermediate calculations.
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> Example 2 Evaluate
(a) /400sxdx b f(x+x2)dx
Solution (). ~Since F(x) = sinx is an antiderivative for f(x) = cosx (Table 4.2.1), we
oveam f4oosxdx=4jcosxdx=4sinx+c
)

Solution (b). From Table 4.2.1 we obtain
) ) $2 g3
/(x+x )dx=fxdx+/x dx=7+?+c <
(5)

Parts (b) and (c¢) of Theorem 4.2.3 can be extended to more than two functions, which
in combination with part (@) results in the following general formula:

[ (/i) + cafo@) + - + e ful0)] dix
— [ e o [ fdx+- - +en [ f@ds (D)

» Example 3
f(3x6—2x2+7x+ 1)dx=3fx6dx—2fx2dx+7/xdx+jldx

—3x7—2x3+72+ +C «
i T

Sometimes it is useful to rewrite an integrand in a different form before performing the
integration. This is illustrated in the following example.

» Example 4 Evaluate
cosx 224
® ./-sinzxd’r ® ./ o .

Solution (a).

1
dx f cosx jcscxootxdx =—cscx+C

sm X sinx smx

Formula 8 in Table 4.2.1

fﬂ;;wd‘:f(,lz— ) f(t_2—2)dt

-
=‘—1—2:+c————2:+c

Solution (b).

Graphs of antiderivatives of a function f are called integral curves of f. We know from
Theorem 4.2.2 that if y = F(x) is any integral curve of f(x), then all other integral curves
are vertical translations of this curve, since they have equauons of the form y = F(x) + C.
For example, y = x3 is one mﬁegral curve for f(x) = x2, so all the other integral curves
have equations of Ihe formy = 3 x? 4+ C; conversely, the graph of any equation of this form
is an integral curve (Figure 4.2.1).



In Example 5, the requirement that
the graph of f pass through the point
(2, 1) selects the single integral curve

1.3 5 &
y = 3x° — = from the family of curves

y = 223 4 C(Figure 4.2.2).
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In many problems one is interested in finding a function whose derivative satisfies
specified conditions. The following example illustrates a geometric problem of this type.

» Example 5 Suppose that a curve y = f(x) in the xy-plane has the property that at
each point (x, y) on the curve, the tangent line has slope x. Find an equation for the curve
given that it passes through the point (2, 1).

Solution. Since the slope of the line tangent to y = f(x) is dy/dx, we have dy/dx = x2,
and
yzfxzdxz w+c

Since the curve passes through (2, 1), a specific value for C can be found by using the fact
thaty = 1 if x = 2. Substituting these values in the above equation yields

1=32H+C o C=-3

50 an equation of the curve is
- 23, . 5
y=3 -3
(Figure 4.2.2). «

INTEGRATION FROM THE VIEWPOINT OF DIFFERENTIAL EQUATIONS
We will now consider another way of looking at integration that will be useful in our later
work. Suppose that f(x) is a known function and we are interested in finding a function
F(x) such that y = F(x) satisfies the equation

dy
s =flx) t)
The solutions of this equation are the antiderivatives of f(x), and we know that these can
be obtained by integrating f(x). For example, the solutions of the equation

dy 5
a—x (Y]

3

Equation (8) is called a differential equation becavse it involves a derivative of an
unknown function. Differential equations are different from the kinds of equations we have
encountered so far in that the unknown is a fimction and not a rumber as in an equation
suchasx2 +5x—6=0.

Sometimes we will not be interested in finding all of the solutions of (8), but rather we
will want only the solution whose graph passes through a specified point (xg, yo). For exam-
ple, in Example 5 we solved (9) for the integral curve that passed through the point (2, 1).

For simplicity, it is common in the study of differential equations to denote a solution
of dy/dx = f(x) as y(x) rather than F(x), as carlier. With this notation, the problem of
finding a function y(x) whose derivative is f(x) and whose graph passes through the point
(x0. yo) s expressed as =

= = f0. o) =0 (10)

3
y=/xzdx=x—+C

This is called an initial-value problem, and the requirement that y(xy) = y¢ is called the
initial condition for the problem.

» Example 6 Solve the initial-value problem

d _ -
a—cosx, yo)=1

Solution. The solution of the differential equation is

y=[cosxa‘.x=sinx+C (11)
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The initial condition y(0) = 1 implies that y = 1 if x = 0; substituting these values in (11)
yields .
1=sn(0)4+C or C=1

Thuys, the solution of the initial-value problemis y = sinx 4 1. «

N SLOPE FIELDS

Tf we interpret dy/dx as the slope of a tangent line, then at a point (x,¥) on an integral
curve of the equation dy/dx = f(x), the slope of the tangent line is f(x). What is interesting
about this is that the slopes of the tangent lines to the integral curves can be obtained with-
out actually solving the differential equation. For example, if

& _ /271
d_x_ x2+1

then we know without solving the equation that at the point where x = 1 the tangent line
to an integral curve has slope v12 +1 = vz and more generally, at a point where x = «,
the tangent line to an integral curve has slope Va2 + 1.

A geometric description of the integral curves of a differential equation dy/dx = f(x)
can be obtained by choosing a rectangular grid of points in the xy-plane, calculating the
slopes of the tangent lines to the integral curves at the gridpoints, and drawing small por-
tions of the tangent lines through those points. The resulting picture, which is called a
slope field or direction field for the equation, shows the “direction” of the integral curves
at the gridpoints. With sufficiently many gridpoints it is often possible to visualize the in-
tegral curves themselves; for example, Figure 4.2.3a shows a slope field for the differential
equation dy/dx = x2, and Figure 4.2.3b shows that same field with the integral curves im-
posed on it—the more gridpoints that are used, the more completely the slope field reveals
the shape of the integral curves. However, the amount of computation can be considerable,
50 computers are usually used when slope fields with many gridpoints are needed.

Slope fields will be studied in more detail later in the text.

AY AY

Slope field for dyldx = x>

b Figure 423
I/ QUICK CHECK EXERCISES 4.2

(a)

-5
Slope field with integral curves

(b)

{See page 217 for answers.)

1. A function F is an antiderivative of a function f on an in-
tervalif_ for all x in the interval.

2, Write an equivalent integration formula for each given
derivative formula.

d 1

(a) E[ﬁ]—m

3. Evaluate the integrals.
(@ f[13+x+5]dx

4. The graph of y = x* + x is an integral curve for the func-
tion f(x) = . G is a function whose graph

®) f[seczx—cscxwtx]dx

is also an imtegral curve for f, and if G(1) =235, then
Gx)=

5. A slope ficld for the differential equation

2x
®) %[sinx]=oosx % “¥_4
has a line segment with slope through the point
(0, 5) and has a line segment with slope through

the point (—4, 1).
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1. In each part, confirm that the formula is correct, and state a

conespondingintegraﬁonformu]a.
27 —
WV i

®) —[ sm(1+13)] =xrcos(1+2)

2, In each part, confirm that the stated formula is correct by
differentiating,
(a)

dx
® [ G-

fxsinxdx=sinx—xcosx+c
X

i tC

FOCUS ON CONCEPTS

3. What is a constant of integration? Why does an answer
to an integration problem involve a constant of integra-
tion?

4. What is an integral curve of a function f? How are two
integral curves of a fimction f related?

5-8 Find the derivative and state a corresponding integration
formula.

5 %[\/ 3 +5]
d_.
7. —lsin(2y3)]

af_x ]

de |x2+ 3
&%[sinx—xcosx]
9-10 Evaluate the integral by rewriting the integrand appro-

priately, if required, and applying the power rule (Formula 2 in
Table 4.2.1).

9. (a) fx“dx ®) fxs”dx © fxaﬁdx
Bo [Fe o[z o[

11-14 EBvaluate cach intepral by applying Theorem 4.2.3 and
Formula 2 in Table 4.2.1 appropriately.

11.[ 5x+%]dx 12.[[;‘1/2—3::7’5+§]dx
13, f[ — 3" 8 dx
.f 3/4 W—+ﬁj|

15-30 Evaluate the intepral and check your answer by dif-
ferentiating,.

15, fx(l +x¥)dx 16. f(2+y"")2dy
.f(l 22— dx

g3
20.‘/.12‘

17. f 2B &

2_
.j'x+2x ldx

21. f[3sinx—2aiec2x]dx 22, f[csc’t—secttant]dt
23, fsecx(secx+tanx)dx .fcscx(sinx+ootx)dx
25, f%zdﬂ 26. f%

@ o 2&[[‘” ¢]d¢

29. f[1+sm csc]do .fs“”“’“dx

2cosx
@ Evaluate the integral
1
14 sinx

by multiplying the numerator and denominator by an ap-

propriate expression.
32. Usc the double-angle formula cos2x =2cos’x—1 to

evaluate the intepral

1
./1+cos2xdx

33-36 True—False Determine whether the statement is true or
false. Bxplain your answer.

33. If F(x) is an antiderivative of f(x), then
[roa=Fo+c
34, If C denotes a constant of integration, the two formulas

fcosxdx=sinx+C

/cosxdx=(sinx+1r)+C

are both correct equations.
35. The function f{x) =secx+ 1 is a solution to the initial-
value problem
4 y0) =1

36. Every integral curve of the slope ficld
Q= 1
dx  x2+1
is the graph of an increasing function of x.

1 37. Use a graphing utility to generate some representative in-
tegral curves of the function f(x) = 5x* — sec’ x over the
interval (—=/2, n/2).

[ 38. Use a graphing utility to gencrate soms representative inte-
gral curves of the function f(x) = (& — 1)/x? over the in-
terval (0, 5).

= secxtanx,

3940 Solve the initial-value problems.

39, @) 2 —?/i, y1) =2
b _ m _1
(h)%—su:::rl »(3)=3
X
© g ="7 YD =0
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ax
o) % — sec? t — sint, y(:—:) =1

© % =x2Vx3, y0)=0

40, @) Q:#, w1)=0

41-44 A particle moves along an s-axis with position function

5 = s(f) and velocity function v() = 5'(). Use the given in-

formation to find s(f).

41. v(t) =32t; s(0)=20 42. v(t) =cost, s(0)=2

B ov)=3/ s@=1 44 v =sins; s0)=0

45, Find the general form of a function whose second deriva-
tive is /x. [Hint: Solve the equation £/ (x) = 4/x for f(x)
by integrating both sides twice.]

46. Find a function £ such that £”(x) = x+ cosx and such
that f(0) = 1 and F'(0) = 2. [Hint: Integrate both sides of
the equation twice.]

47-51 Find an equation of the curve that satisfies the given

47, At each point (x,y) on the curve the slope is 2x + 1; the
curve passes through the point (—3, 0).

48. At each point (x,y) on the curve the slope is (x + 1)%; the
curve passes through the point (—2, 8).

49, At each point (x,y) on the curve the slope is —sinx; the
curve passes through the point (0, 2).

50. At each point (x, ¥) on the curve the slope equals the square
of the distance between the point and the y-axis; the point
(—1,2) is on the curve.

51. At each point (x, y) on the curve, y satisfies the condition
dy/dx? = 6x; the line y = 5 — 3x is tangent to the curve
at the point where x = 1.

52, In cach part, use a CAS to solve the initial-value problem.,

@ %=x2cos33x, y#@/2) = —1
dy_ i
® = a0 =2

[ 53. (a) Useagraphing utility to generate a slope field for the dif-
ferential equation dy/dx = xin the region -5 <x < 5
and —-5<y<5

(b) Graph some representative integral curves of the func-
tion fix) = x.

(c) Find an equation for the integral curve that passes
through the point (2, 1).

[ 54. (a) Use a graphing utility to generate a slope field for
the differential equation dy/dx = /x in the region
0<x<10and 5<5y< S

(b) Graph some representative integral curves of the func-
tion f{x) = \/x forx > 0.

(c) Find an equation for the integral curve that passes
through the point (0, 1).

5558 The given slope ficld figure corresponds to one of the
differential equations below. Identify the differential equation
that matches the figure, and sketch solution curves through the
highlighted points.

dy _ & __
(a)d—x—Z (b)dx_ X

dy 2 dy _
(c)d—x—x 4 (d)dx—mnx
55. y 56. AY
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57. AY 58. ¥
L= 6Fyv—1 111 1
11 leN V=011 A
[ A 8 RN I 1
P =N FN=a 00 1
111t =2F\Nv=1111 T
Tl =\NFVv—91 11 x ®//
e
~6 -4 -2\ 121416 24
P =—2F\N—=1 ) 1 Lt
Pl =N —=11 11 1
L —4FN—=1 10 1
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P —6FN—1 111 s
FOCUS ON CONCEPTS
59. Let F and G be the functions defined by
xsinx 2 4 sinx, x>0
F(x)= and G(x) = -
x —14sinx, x<0

{a) Show that F and G have the same derivative.
(b) Show that G(x) # F(x) + C for any constant C.
(¢} Do patts (a) and (b) contradict Theorem 4.2.27 Ex-

plain.
60. Follow the directions of Bxercise 59 using
F(I)=x2+3x il G(x)={x+3, x>0
x X, x<0

61-62 Use a trigonometric identity to evaluate the integral.
6L, f tan® x d 62. f ool xdx

63-64 Use the identities cos20 =1 — 2sin®@ = 2¢cos°6 — 1
to help evaluate the integrals

63. f sin” (x/2) dx ] f cos” (x/2)dx

65. The speed of sound in air at 0°C (or 273 K on the Kelvin
scale) is 1087 ft/s, but the speed v increases as the temper-
ature T rises. Experimentation has shown that the rate of

change of v with respect to T is
d_v __ los7 T_l/z
dT  24/273

where v is in feet per second and T is in kelvins (K). Find
a formula that expresses v as a function of T

66. The time 7 between tosses of a juggling ball is a function of
the height A of the toss. Suppose that a ball tossed 4 feet
high spends 1 second in the air and that the rate of change
of ¢ with respect to k is

a_ 1
dk  4vh
Find a formula that expresses ¢ as a function of k.



@ Suppose that a uniform metal rod 50 cm long is insu-
lated laterally, and the temperatures at the exposed ends are
maintained at 25°C and 85° C, respectively. Assume that
an x-axis is chosen as in the accompanying figure and that
the temperature 7(x) satisfies the equation

a’T
oz ="
Find T(x) for 0 < x £ 50.
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25°C 85°C
0 50 < Figore Ex-67
@ writing What is an initial-value problem? Describe the
sequence of steps for solving an initial-value problem.
69. Writing What is a slope field? How are slope fields and
integral curves related?

v/ QUICK CHECK ANSWERS 42 1. F'5) =fi) 2. (a) [ #dx=\/i+c ®) f cosxde= st
3. (@) x*+ 32" +5x+C @) tanx+cesex+C 4 2x+1; x> +x+3 5 0; -2

E INTEGRATION BY SUBSTITUTION

In this section we will study a technique, called substitution, that can often be used to
transform complicated integration problems into simpler ones.

u-SUBSTITUTION

The method of substitution can be motivated by examining the chain rule from the view-
point of antidifferentiation. For this purpose, suppose that F is an antiderivative of f and
that g is a differentiable function. The chain rule implies that the derivative of F(g(x)) can
be expressed as d
d—x[F (80N = F'(gx))g' )

which we can write in integral form as
/ F'(g(x))g'(x)dx = Fgx) + C )
or since F is an antiderivative of f,
f Re(x)g'(x) dx = F(g(x))+ C 2
For our purposes it will be useful to let & = g(x) and to write du/dx = g'(x) in the differ-
ential form du = g’(x) dx. With this notation (2) can be expressed as

[f(u)du =Fu)+C 3)

The process of evaluating an integral of form (2) by converting it into form (3) with the
substitution segt wad  dr=

is called the method of u-substitution. Here the differential notation serves primarily as
a useful “bookkeeping” device for the method of u-substitution. The following example
illustrates how the method works.

» Example 1 Evaluate / 2+ D® . 2xdx.

Solution. If we let u = x2 4 1, then du/dx = 2x, which implies that du = 2x dx. Thus,
the given integral can be written as

51 2 1 1
f(x2+1)5°-2xdx=fuwdu=';—l+c=$+c <

It is important to realize that in the method of #-substitution you have control over the
choice of &, but once you make that choice the value of du is computed. The method of



