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This course is designed to provide fundamentals of ordinary differential equations and linear algebra with some useful
applications needed for technical courses. It includes topics on first-order differential equations and mathematical models,
integral solutions, separable equations, linear equations, other solution methods and exact equations, a review of matrix
inverses and determinants, vector spaces and their subspaces, independence of vectors, bases and dimensions, row and
column spaces, higher-order differential equations, homogeneous and nonhomogeneous equations, the eigenvalue
problem and their applications on diagonalization and powers of matrices, matrices and systems of linear differential
equations, the eigenvalue method for linear systems, multiple eigenvalue solutions, matrix exponentials, and
nonhomogeneous linear systems.

CLO 2.1. analyze concepts and procedures related to linear
algebra and ordinary differential equations

CLO 2.2. solve first-order differential equations and related
applications

CLO 2.3. apply methods of linear systems and vector spaces to
solve associated algebraic and geometric problems

CLO 2.4. solve higher-order linear differential equations and
related applications

CLO 2.5. apply the eigenvalue method to solve problems
involving diagonalization and powers of matrices

CLO 2.6. solve systems of linear differential equations and their
applications using the eigenvalue method

()]

7.5 9.5

7.5 8.5

© | &~ | w -lk( FE

2.5 5.5

7.5 12.5

* Q = Quiz HW = Homework ME = Midterm Exam FE = Final Exam (comprehensive)
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1. Check your EDUGATE account for the official class time, location, and absences.

2. Attendance will be checked at the start of each period as per ETA Rules and Regulations:
a. If you do not attend the class for any reason, you will be marked ABSENT for the corresponding missed periods.
b. If you arrive after the first 5 minutes, you will be marked ABSENT for that period.
c¢. If you arrive after the instructor called all students’ names/IDs but during the first 5 minutes, you will be marked
LATE for that period and will count as 1/3 of an absence.

d. If you were late three times, then these will be counted as 1 full absence.

3. In a semester, you will get a “DN” status if you exceed 15% absences.

4. If you have a valid reason, and wanted your absence to be removed, contact the Office of Student Affairs and present
your valid excuse there.

e Schedule your study time and be consistent over the pay: [EDEM Day3 | oays RCEBM oave ELE
Semester CLASS Study Time CLASS Study Time _ Study Time
e Copy lecture notes and ask questions' copy notes during the class and clarify your doubts
. . .
Apply the Feynman technique for learning new can be used before class or after class
concepts:
1. Choose a concept and organize it in your own words. organize a concept using simple language and write it on a paper
2. Teach the concept to a beginner. explain the concept to a beginner; identify weaknesses and issues in your explanation

in case you have trouble explaining, get feedback from your audience and research the

3. Fill the Gaps that you may have missed. concept again — go back to your resources or find new resources to fill the gaps

4. Refine your notes and explanation of the concept. further simplify and refine your notes and explanations; repeat these steps as needed

e Test yourself on the topics of the course. solve the practice exercises and previous tests or exams

e Do not simply memorize. Studying is not memorizing.  you MUST apply your knowledge and develop mathematical skils in this course

1. The suggested examples and practice exercises are the MINIMUM required level of mathematical maturity to be
successful in this course.

2. Answer all the practice exercises without looking at any course-related materials.

3. Do your homework seriously, learn from it, and use it to extend your knowledge and skills in the course.

4. Utilize your instructor’s office hours for help, as needed.
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Part VIII: PACING SCHEDULE & PRACTICE EXER('{\
Week | Textbook’s TOPIC SUGGESTED REQUIRED
No. Section (§) J EXAMPLES PRACTICE EXERCISES ™~
/ C 4
Differential Equations and 1,2,3,4,5,6,7
— - 9 &5~y Ty sy My [y
z L1 Mathematical Models 1/\\{9, 10 i 6,7, 10, 12, 16, 19,26
- Integrals as General and Partjeftilar 4,7,10, 14, 18, 19, 25, 31, 35,
1 1.2 . 1,2,3,4
’ Solutions 42
\ 1.4 Sepal_rabl_e Equations and '/ 1,2.3.4,5.6 8,13, 16, 18,27, 33, 35, 49, 44,
Applications 50, 51
15 " Linear First-Oder Equations 1./ 1,2,3,4 11, 14, 18, 21, 25, 27, 33
1-4
16 Substitution Methods and Exact 1,2,3,4,5,6,8, 7 12.16.22.27. 34. 37
e Equations 9,10, 11 T o e
___’#—
"r 35 Inverses ofMatrices‘ (Review) ) 1,2,4,5,6,7,8 3,12,15,18, 21,25
/'Wv
3.6 Deteminant@ é’ g’ ?041? 6,7, 3,6,7,11,15,29,32,36
f\/\/ s 7
Quiz 1 Assessment for CLO 2.2
C 4.1 The Vector Space R? 1,2,3,4,5,6 3,8,14,17, 23, 28, 33, 36
Z 4.2 The Vector Space R"and Subspac¢s | 1,2, 3,4, 5 3,11, 15,18, 19, 22
Linear Combinations and
43 Independence of Vectors 1,2,3,4,5,6 3,8, 10,16, 19, 25
5-7
Bases and Dimension for Vector 1,2,3,4,5,6,7,
4.4 Spaces 80 11 5.9, 15, 18, 26,29
4.5 Row and Column Spaces \_,r 1,2,3,4,5 2,11, 14, 19, 21
Quiz 2 Assessment for CLO 2.3
8 M];‘::I;m Assessment for CLO 2.1 (10.00%), CLO 2.2 (47.50%), and CLO 2.3 (42.50%)
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Part VIII: PACING SCHEDULE & PRACTICE EXERCISES
Week Textbook’s SUGGESTED REQUIRED

No. | Section (§) L4 EXAMPLES PRACTICE EXERCISES
7 5.1 Second-Order Linear Equations 1,2,3,4,5,6,7 3,12,17, 20, 33, 41, 46, 53
General Solutions inear
5.2 Equations ,—-—Qﬂ’l 1,2,3,4,5,6,7 5,9,11,12,15,21, 27,30
Homogeneous Eguatiens with 4,10, 13, 20, 22, 25, 29, 32, 35,
@ >3 Constant Coefficients 1,2,3,4,5,6,7,8 40
Nonhomogeneous Equations and 1,2,3,4,5,6,7,
; 35 Undetermined Coefficients 1 8,9,10 3,9,23,26,33
————
9-12 6.1 Introduction to Eigenvalues N1,2,3,4,56,7 1, 8, 13, 18, 26, 30, 31
6.2 Diagonalization of Matrices 1,2,3,4 2,9,13,19, 23,27
—,————
\' 6.3 Appl}catlons Involving Powers of \l-’l, 2.3.4.5.6 1,9, 14,20, 29, 34, 36
Matrices
7.1 First-Order Systems and 1,2,3,4,5,6,7 |2,4,9,13,19,25

Applications

Quiz 3 Assessment for CLO 2.4 (66.67%) and CLO 2.5 (33.33%)

7.2 Matrices and Linear Systems 1,2,3,4,5 1,5,6, 13,18, 20, 24, 30, 33
L\ 73 The Eigenvalue Method for Linear 1,2.3.4 2.3.,9, 15, 17,23, 26

Systems
Second-Order Systems and

75 Mechanical Applications 1,23 3,3, 7.9

13-15 7.6 Multiple Eigenvalue Solutions 1,2,3,4,5,6,7,8 | 1,7,11, 15,21, 25

81 Matrix Exponentials and Linear 1,2.3.4,5.6,7 1,7.12, 17,21, 24, 25,27
Systems

8.2 Nonhomogeneous Linear Systems 1,2,3,4 1,5, 8, 13, 20, 22,27, 30

Quiz 4 Assessment for CLO 2.6

Assessment for CLO 2.1 (10.00%), CLO 2.2 (12.50%), CLO 2.3 (10.00%), CLO 2.4 (22.50%),

16-17 | Fimal Exam - ' o 1500 001006 (31.05%)
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irst-Order
itferential Equations

Differential Equations and Mathematical Models

Example 1

he laws of the universe are written in the language of mathematics. Algebra
is sufficient to solve many static problems, but the most interesting natural
phenomena involve change and are described by equations that relate changing

quantities.
Because the derivative\g the function f is the rate at which
the quantity x = f(z) is changing with respect to the independent variable ¢, it

is natural that equations involving derivatives are frequently used to describe the
changing universe. An equation relating an unknown function and one or more of
its derivatives is called a differential equation.

The differential equation .
T— dx 2442 __—-H \5
,ﬁ .
. ac .,

involves both the unknown function x () and its first derivativ =dx/dt. The differential
. C— e
equation r—

« —) +3%+7y:0 ) Zaé

involves the unknown function y of the independent variable x and the first two derivatives
y"and y” of y. [ |

The study of differential equations has three principal goals:
—~—

1. To discover the differential equation that describes a specified physical
situation.

2. To find—either exactly or approximately—the appropriate solution of that
equation. =7 = st

3. To interpret the solution that is found.

R

In algebra, we typically seek the unknown numbers that satisfy an equation
such as x3 4+ 7x2 — 11x + 41 = 0. By contrast, in solving a differential equation, we

1


Mobile User




Mobile User




Mobile User


2 CHAPTER 1 FIRST-ORDER DIFFERENTIAL EQUATIONS

Example 2

FIGURE 1.1.1. Newton’s law of
cooling, Eq. (3), describes the cooling
of a hot rock in water.

Example 4

FIGURE 1.1.2. Torricelli’s law of
draining, Eq. (4), describes the
draining of a water tank.

are challenged to find the unknown functions y = y(x) for which an identity such
as y’(x) = 2xy(x)—that is, the differential equation
]

—_) I 2xy

—holds on some interval of real numbers. Ordinarily, we will want to find all
solutions of the differential equation, if possible.

If C is a constant and

\_———-—-’" X
y(x) = e, (1)
then —

dy X2\ _ *2\ _
i C (2xe ) = (2x) (Ce ) =2xYy.
Thus every function y(x) of the form in Eq. (1) satisfies—and thus is a solution of—the
differential equation

dy

— =2 2

I =2 @)
for all x. In particular, Eq. (1) defines an infinite family of different solutions of this differen-
tial equation, one for each choice of the arbitrary constant C. By the method of separation of
variables (Section 1.4) it can be shown that every solution of the differential equation in (2)
is of the form in Eq. (1). |
— ad

Differential Equations and|[Mathematical Models

he following three examples illustrat€ The process of translating scientific laws and

principles into differential equations. In each of these examples the independent
variable is time 7, but we will see numerous examples in which some quantity other
than time is the independent variable.

Rate of cooling Newton’s law of cooling may be stated in this way: The time rate of change
(the rate of change with respect to time ¢) of the temperature 7'(¢) of a body is proportional
to the difference between 7 and the temperature A of the surrounding medium (Fig. 1.1.1).

le:é)“ i — T — 4, )
“ -

where k is a positive constant. Observe that if T > A, then d T/dt < 0, so the temperature is
a decreasing function of ¢ and the body is cooling. Butif T < A, then dT/dt > 0, so that T
is increasing.

Thus the physical law is translated into a differential equation. If we are given the
values of k and A4, we should be able to find an explicit formula for 7'(z), and then—with the
aid of this formula—we can predict the future temperature of the body. |

Draining tank  Torricelli’s law implies that the time rate of change of the volume V' of
water in a draining tank (Fig. 1.1.2) is proportional to the square root of the depth y of water
in the tank:

%

ar Vs “

where k is a constant. If the tank is a cylinder with vertical sides and cross-sectional area A4,
then V = Ay, sodV/dt = A-(dy/dt). In this case Eq. (4) takes the form

dy
o —hy. (5

where h = k/A is a constant. |
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1.1 DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODEIS 3

Population growth  The time rate of change of a population P () with constant birth and
/. death rates 1s, in many simple cases, proportional to the size of the population. That is,

(6)

)

is a solution of the differential equation \) !

dP

ar = kP e\

in (6). We verify this assertion as follows:
P'(t) = Ckek' =k (Cek’> — kP(1)

for all real numbers ¢. Because substitution of each function of the form given in
(7) into Eq. (6) produces an identity, all such functions are solutions of Eq. (6).
Thus, even if the value of the constant k is known, the differential equation
dP/dt = kP has infinitely many different solutions of the form P(z) = Ce¥*, one for
each choice of the “arbitrary” constant C. This is typical of differential equations.
It is also fortunate, because it may allow us to use additional information to select

from among all these solutions a particular one that fits the situation under study.

Example 6 Population growth  Suppose that P(¢) = C ekt is the Bogulation of a colony o

time ¢, that the population at time ¢ = 0 (hours, h) was 1000, and that the population doubled
after 1 h. This additional information about P(z) yiclds the following equations: ===

- 1000 = P(0) = Ce® = C,
2000 = P(1) = Cek.

It follows that C = 1000 and that ek = 2,0k =1In2 =~ 0.693147. With this value of k the
differential equation in (6) is

dpP
< =(n2)P ~ (0.693147)P.
Substitution of k = In2 and C = 1000 in Eq. (7) yields the particular solution

P(t) = 1000e 12" = 1000(™2)" = 1000-2"  (because "2 = 2)

that satisfies the given conditions. We can use this particular solution to predict future popu-
lations of the bacteria colony. For instance, the predi f bacteria in the population
after one and a half hours (whens = 1.5) i

P(1.5f= 1000 - 2%/% ~ 2828. L\Y [ ]

The conditiom\ P (0).= 1000in Example 6 is called an initial condition because

we frequently write differential equations for which # = 0 is the “starting time.”
Figure 1.1.3 shows several different graphs of the form P(¢) = Cek* with k = In2.
The graphs of all the infinitely many solutions of dP/dt = kP in fact fill the entire
two-dimensional plane, and no two intersect. Moreover, the selection of any one
point Py on the P-axis amounts to a determination of P(0). Because exactly one
FIGURE 1.1.3.  Graphs of solution passes through each such point, we see in this case that an initial condition
P(1) = Cek" with k = In2. P(0) = Py determines a unique solution agreeing with the given data.
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4

CHAPTER 1 FIRST-ORDER DIFFERENTIAL EQUATIONS

Mathematical Models

Our brief discussion of population growth in Examples 5 and 6 illustrates the crucial
process of mathematical modeling (Fig. 1.1.4), which involves the following:

1. The formulation of a real-world problem in mathematical terms; that is, the
construction of a mathematical model.

2. The analysis or solution of the resulting mathematical problem.

3. The interpretation of the mathematical results in the context of the original
real-world situation—for example, answering the question originally posed.

Real-world /
/‘ situation P

Formulation Interpretation

Mathematical
results
A\

Mathematical

analysis
p—

) Mathematical
model

FIGURE 1.1.4. The process of mathematical modeling.

In the population example, the real-world problem is that of determining the
population at some future time. A mathematical model consists of a list of vari-
ables (P and 7) that describe the given situation, together with one or more equations
relating these variables (dP/dt = kP, P(0) = Py) that are known or are assumed to
hold. The mathematical analysis consists of solving these equations (here, for P as
a function of ¢). Finally, we apply these mathematical results to attempt to answer
the original real-world question.

As an example of this process, think of first formulating the mathematical
model consisting of the equations dP/dt = kP, P(0) = 1000, describing the bac-
teria population of Example 6. Then our mathematical analysis there consisted of
solving for the solution function P(¢) = 1000e/2?* = 1000 - 2 as our mathemat-
ical result. For an interpretation in terms of our real-world situation—the actual
bacteria population—we substituted ¢ = 1.5 to obtain the predicted population of
P(1.5) ~ 2828 bacteria after 1.5 hours. If, for instance, the bacteria population is
growing under ideal conditions of unlimited space and food supply, our prediction
may be quite accurate, in which case we conclude that the mathematical model is
adequate for studying this particular population.

On the other hand, it may turn out that no solution of the selected differential
equation accurately fits the actual population we’re studying. For instance, for no
choice of the constants C and k does the solution P(r) = Cek? in Eq. (7) accurately
describe the actual growth of the human population of the world over the past few
centuries. We must conclude that the differential equation dP/dt = k P is inadequate
for modeling the world population—which in recent decades has “leveled off” as
compared with the steeply climbing graphs in the upper half (P > 0) of Fig. 1.1.3.
With sufficient insight, we might formulate a new mathematical model including
a perhaps more complicated differential equation, one that takes into account such
factors as a limited food supply and the effect of increased population on birth and
death rates. With the formulation of this new mathematical model, we may attempt
to traverse once again the diagram of Fig. 1.1.4 in a counterclockwise manner. If
we can solve the new differential equation, we get new solution functions to com-
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Example 7

Example 8

Solution

1.1 DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODEIS 5

pare with the real-world population. Indeed, a successful population analysis may
require refining the mathematical model still further as it is repeatedly measured
against real-world experience.

But in Example 6 we simply ignored any complicating factors that might af-
fect our bacteria population. This made the mathematical analysis quite simple,
perhaps unrealistically so. A satisfactory mathematical model is subject to two con-
tradictory requirements: It must be sufficiently detailed to represent the real-world
situation with relative accuracy, yet it must be sufficiently simple to make the math-
ematical analysis practical. If the model is so detailed that it fully represents the
physical situation, then the mathematical analysis may be too difficult to carry out.
If the model is too simple, the results may be so inaccurate as to be useless. Thus
there is an inevitable tradeoff between what is physically realistic and what is math-
ematically possible. The construction of a model that adequately bridges this gap
between realism and feasibility is therefore the most crucial and delicate step in
the process. Ways must be found to simplify the model mathematically without
sacrificing essential features of the real-world situation.

Mathematical models are discussed throughout this book. The remainder of
this introductory section is devoted to simple examples and to standard terminology
used in discussing differential equations and their solutions.

Examples and Terminology (/

If C is a constant and y(x) = 1/(C — x), then

NN~
y __ 1 _
dx (C—x2 ”?
if x # C. Thus
= 8
Y =3 ®)
defines a solution of the differential equation
d
=y ©)

dx
on any interval of real numbers not containing the point x = C. Actually, Eq. (8) defines a
one-parameter family of solutions of dy/dx = y?, one for each value of the arbitrary constant
or “parameter” C. With C = 1 we get the particular solution

1
y(x) = 1>

that satisfies the initial condition y(0) = 1. As indicated in Fig. 1.1.5, this solution is contin-
uous on the interval (—oo, 1) but has a vertical asymptote at x = 1. |

Verify that the function y(x) = 2x1/2 — x1/21n x satisfies the differential equation
R, ——

N 4x2y" 4y =0 (10)

First we compute the derivatives

for all x > 0.

Y (x) = —%x_l/Z Inx and y"(x)= %x_3/2 Inx — %x_3/2.
Then substitution into Eq. (10) yields
4x2y" 4+ y = 4x? (%x—3/2 Inx — %x_3/2) +2x/2_x2nx =0

if x is positive, so the differential equation is satisfied for all x > 0. |
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6 CHAPTER 1 FIRST-ORDER DIFFERENTIAL EQUATIONS

The fact that we can write a differential equation is not enough to guarantee
,2 that it has a solution. For example, it is clear that the differential equation

é — 79 ,(y’@fy*’j::;) (an

has no (real-valued) solution, because the sum of nonnegative numbers cannot be
negatlve For a variation on this theme, note that the equation

2 Jegative
(/'3) ,—} q ()2 432 =0 (12)

obviously has only the (real-valued) solution y(x) = 0. In our previous examples
any differential equation having at least one solution indeed had infinitely many.
" Wr of a differential equation is the order of the highest derivative that
/ // ,/ / appears in it. The dm of Example 8 is of second order, those in

Examples 2 through 7 are first-order equations, and

\ .
¢ v, @ 3)
x +x =sinx
(u) '—\O_g,w‘}/o — APy
—

is a fourth-order equation. The most general form of an nth-order differential
equation with independent variable x and unknown function or dependent variable
e —— e e

y=yX)is
5 : — Fxyy oy y®) =0, (13)
y=1/(1-x) |
| where F is a specific real-valued function of n 4 2 variables.
| Our use of the word solution has been until now somewhat informal. To be
©. 1) |x=1 . . . . . . .
| precise, we say that the continuous function v = u(x) is a solution of the differential
=0 ! equation in (13) on the interval / provided that the derivatives v/, u”, ..., u™ exist
| on / and
| F(x,u,u’,u”,...,u("))zo
I
: for all x in /. For the sake of brevity, we may say that u = u(x) satisfies the
_5,5 0 ' 5  differential equation in (13) on /.
x Remark Recall from elementary calculus that a differentiable function on an open interval
FIGURE 1.1.5. The solution of is necessarily continuous there. This is why only a continuous function can qualify as a
y’' = y? defined by y(x) = 1/(1—x).  (differentiable) solution of a differential equation on an interval. ]
EX am ple Continued  Figure 1.1.5 shows the two “connected” branches of the graph y = 1/(1 — x).
The left-hand branch is the graph of a (continuous) solution of the differential equation y’ =
2 a%) y?2 that is defined on the interval (—oco, 1). The right-hand branch is the graph of a different
solution of the differential equation that is defined (and continuous) on the different interval
6 (1, 00). So the single formula y(x) = 1/(1 — x) actually defines two different solutions (with
different domains of definition) of the same differential equation y’ = y2. |
If A and B are constants and
SN A~

y(x) = Acos3x + Bsin3x, (14)

ccessive differentiations yield

y'(x) = —3Asin3x + 3B cos 3x,
y"(x) = =94 cos 3x — 9B sin3x = —9y(x)

for all x. Consequently, Eq. (14) defines what it is natural to call a two-parameter family of
solutions of the second-order differential equation

) Y49y =0 (15)

on the whole real number line. Figure 1.1.6 shows the graphs of several such solutions. M
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FIGURE 1.1.6. The three solutions
y1(x) = 3cos3x, yo(x) = 2sin3x,
and y3(x) = —3cos 3x + 2sin3x of

the differential equation y” + 9y = 0.
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1.1 DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODEIS 7

Although the differential equations in (11) and (12) are exceptions to the gen-
eral rule, we will see that an nth-order differential equation ordinarily has an n-
parameter family of solutions—one involving n different arbitrary constants or pa-
rameters.

In both Egs. (11) and (12), the appearance of y’ as an implicitly defined func-
tion causes complications. For this reason, we will ordinarily assume that any dif-
ferential equation under study can be solved explicitly for the highest derivative that
appears; that is, that the equation can be written in the so-called normal form

y(") =G (x, vy oy y("_l)) , (16)

where G is a real-valued function of n + 1 variables. In addition, we will always
seek only real-valued solutions unless we warn the reader otherwise.

All the differential equations we have mentioned so far are ordinary differ-
ential equations, meaning that the unknown function (dependent variable) depends
on only a single independent variable. If the dependent variable is a function of
more independent variables € Pyrtial derivatives are likely to be involved;
e equation is called 4 differential equation. For example, the
crature ¥ = u(x,t) of a long niform rod at the point x at time ¢ satisfies
(under appropriate simple condpfions) the partial differential equation

et

where k is a constant (called the thermal diffusivity of the rod). In Chapters 1
through 8 we will be concerned only with ordinary differential equations and will
refer to them simply as differential equations.

In this chapter we concentrate on first-order differential equations of the form

L= fem. a7
X

We also will sample the wide range of applications of such equations. A typical
mathematical model of an applied situation will be an initial value problem, con-
sisting of a differential equation of the form in (17) together with an initial condi-
tion y(x¢) = yo. Note that we call y(xg) = yo an initial condition whether or not
xo = 0. To solve the initial value problem

d
> d—y = f(x.y).  y(x0) = yo (18)
X

means to find a differentiable function y = y(x) that satisfies both conditions in
Eq. (18) on some interval containing xg.

SRS Given the sglusion y(x) = 1/(C A x) of the differential equation dy/dx = y? discussed in

Solution

xample 7, solve A€ initial value problem

v _ >

X C®

We need only find a value of C so that the solution y(x) = 1/(C — x) satisfies the initial
condition y(1) = 2. Substitution of the values x = 1 and y = 2 in the given solution yields

1
2=y = -1
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8 CHAPTER 1 FIRST-ORDER DIFFERENTIAL EQUATIONS

5 s02C —2 =1, and hence C = % With this value of C we obtain the desired solution
- 1 2
y=2/(3-2x) ) =5— = T
(1,12) 2 X -
- ok x=32 Figure 1.1.7 shows the two branches of the graph y = 2/(3 — 2x). The left-hand branch is

the graph on (—oo, %) of the solution of the given initial value problem y’ = y2, y(1) = 2.
The right-hand branch passes through the point (2, —2) and is therefore the graph on (%, 00)

2,-2 . . o
@) of the solution of the different initial value problem y’ = y2, y(2) = —2. |

The central question of greatest immediate interest to us is this: If we are given

ok 0 5 adifferential equation known to have a solution satisfying a given initial condition,
X how do we actually find or compute that solution? And, once found, what can we do

FIGURE 1.1.7. The solutions of with it? We will see that a relatively few simple techniques—separation of variables
¥’ = y? defined by (Section 1.4), solution of linear equations (Section 1.5), elementary substitution
y(x) =2/3 —2x). methods (Section 1.6)—are enough to enable us to solve a variety of first-order

L equations having impressive applications.

Problems

In Problems 1 through 12, verify by substitution that each
given function is a solution of the given differential equation.
Throughout these problems, primes denote derivatives with re-
spect to x.

1Ly =3x2y=x3+7
2. Y 42y =0,y =372
3. y/ +4y =0; y; = cos2x, yp = sin2x
4. y" =9y y1 =, yp =
5. ) =y+2eFy=er—eF
6. Y +4y +4dy =0;y1 = e 2%, yp = xe ¥
7.y =2y +2y =0; y; = e*cosx, yp = e~ sinx
8. y"+y=3c0s2x, y; =c0sx —cos2x, yp = sin x —cos 2x
4 2 0y —
9. y' +2xy _O’y_l—|——x2
10. x2y" +xy' —y=Inx; y; =x —Inx, yp = %—lnx

1 Inx
11. x2y" +5xy" +4y =0; y1 = 2=

12. x2y” —xy’ +2y =0; y; = xcos(Inx), yo = x sin(In x)
In Problems 13 through 16, substitute y = ™™ into the given

differential equation to determine all values of the constant r
for which y = e"* is a solution of the equation.

14. 49" =y
16. 3y" +3y' —4y =0

13. 3y’ =2y
15. y"+y' =2y =0

In Problems 17 through 26, first verify that y(x) satisfies the
given differential equation. Then determine a value of the con-
stant C so that y(x) satisfies the given initial condition. Use a
computer or graphing calculator (if desired) to sketch several
typical solutions of the given differential equation, and high-
light the one that satisfies the given initial condition.

17. Y/ +y =0, y(x) = Ce™, y(0) =2
18. y' =2y; y(x) = Ce?*, y(0) =3
19. yy =y +1;y(x) =Ce* —1,y(0) =5

20. Y =x—y;y(x)=Ce ¥ +x—1,y(0) =10
21,y +3x2y =0; y(x) = Ce ™, y(0) =7
22. ¥y ' =1;y(x) =In(x + C), y(0) =0

23. xd—y +3y =2x°; y(x) = %xs +Cx73,y2) =1
X

24. xy' =3y = x3; y(x) = x3(C + Inx), y(1) = 17
25. 3/ =3x2(»%2 4+ 1); y(x) = tan(x3 4+ C), y(0) = 1
26. y' + ytanx = cosx; y(x) = (x + C)cosx, y(r) =0

In Problems 27 through 31, a function y = g(x) is described
by some geometric property of its graph. Write a differential
equation of the form dy/dx = f(x, y) having the function g as
its solution (or as one of its solutions).

27. The slope of the graph of g at the point (x, y) is the sum
of x and y.

28. The line tangent to the graph of g at the point (x, y) inter-
sects the x-axis at the point (x/2, 0).

29. Every straight line normal to the graph of g passes through
the point (0, 1). Can you guess what the graph of such a
function g might look like?

30. The graph of g is normal to every curve of the form
y = x2 + k (k is a constant) where they meet.

31. The line tangent to the graph of g at (x, y) passes through
the point (—y, x).

Differential Equations as Models

In Problems 32 through 36, write—in the manner of Egs. (3)
through (6) of this section—a differential equation that is a
mathematical model of the situation described.

32. The time rate of change of a population P is proportional
to the square root of P.

33. The time rate of change of the velocity v of a coasting
motorboat is proportional to the square of v.

34. The acceleration dv/dt of a Lamborghini is proportional
to the difference between 250 km/h and the velocity of the
car.
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35. In a city having a fixed population of P persons, the time
rate of change of the number N of those persons who have
heard a certain rumor is proportional to the number of
those who have not yet heard the rumor.

36. In acity with a fixed population of P persons, the time rate
of change of the number N of those persons infected with
a certain contagious disease is proportional to the product
of the number who have the disease and the number who
do not.

In Problems 37 through 42, determine by inspection at least
one solution of the given differential equation. That is, use
your knowledge of derivatives to make an intelligent guess.
Then test your hypothesis.

37. y/ =0 38. y/=y
39. xy' +y =32 40. (") +y* =1
41. y' +y =€~ 2. 9" +y=0

Problems 43 through 46 concern the differential equation

dx
= k2,
a7

where k is a constant.

43. (a) Ifk is a constant, show that a general (one-parameter)
solution of the differential equation is given by x(¢) =
1/(C — kt), where C is an arbitrary constant.
(b) Determine by inspection a solution of the initial value
problem x” = kx?2, x(0) = 0.
44. (a) Assume that k is positive, and then sketch graphs of
solutions of x’ = kx? with several typical positive
values of x(0).
(b) How would these solutions differ if the constant k
were negative?
45. Suppose a population P of rodents satisfies the differen-
tial equation dP/dt = kP2. Initially, there are P(0) =

3C=—2 C=-1C=0 C=1C=2 C=3
T T

R | |

SIS LN

C=3C=3C=1 C=
X

FIGURE 1.1.8. Graphs of solutions of the
equation dy/dx = y2.

46.

47.

48.

2 rodents, and their number is increasing at the rate of
dP/dt = 1 rodent per month when there are P = 10 ro-
dents. Based on the result of Problem 43, how long will it
take for this population to grow to a hundred rodents? To
a thousand? What’s happening here?

Suppose the velocity v of a motorboat coasting in water
satisfies the differential equation dv/dt = kv?. The ini-
tial speed of the motorboat is v(0) = 10 meters per sec-
ond (m/s), and v is decreasing at the rate of 1 m/s? when
v = 5 m/s. Based on the result of Problem 43, long does
it take for the velocity of the boat to decrease to 1 m/s?
To %m/ s? When does the boat come to a stop?

In Example 7 we saw that y(x) = 1/(C — x) defines a
one-parameter family of solutions of the differential equa-
tion dy/dx = y?. (a) Determine a value of C so that
y(10) = 10. (b) Is there a value of C such that y(0) = 0?
Can you nevertheless find by inspection a solution of
dy/dx = y? such that y(0) = 0? (c) Figure 1.1.8 shows
typical graphs of solutions of the form y(x) = 1/(C — x).
Does it appear that these solution curves fill the entire xy-
plane? Can you conclude that, given any point (a,b) in
the plane, the differential equation dy/dx = y? has ex-
actly one solution y(x) satisfying the condition y(a) = b?
(a) Show that y(x) = Cx* defines a one-parameter fam-
ily of differentiable solutions of the differential equation
xy’ = 4y (Fig. 1.1.9). (b) Show that

(x) = —x* ifx <0,
Y=Y 4 ifxzo0

defines a differentiable solution of xy” = 4y for all x, but is
not of the form y(x) = Cx*. (c) Given any two real num-
bers a and b, explain why—in contrast to the situation in
part (c) of Problem 47—there exist infinitely many differ-
entiable solutions of xy’ = 4y that all satisfy the condition

y(a) =b.

100

—60 L n

-80 -

AL B S B W
X

2 345

FIGURE 1.1.9. The graph y = Cx* for
various values of C.
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