9260 CHAPTER 14 Partial Derivatives

@ Exercises

1. Suppose that lim(, )@ 1 f(x, y) = 6. What can you say
about the value of (3, 1)? What if f is continuous?

2. Explain why each function is continuous or discontinuous.
(a) The outdoor temperature as a function of longitude,
latitude, and time
(b) Elevation (height above sea level) as a function of
longitude, latitude, and time
(c) The cost of a taxi ride as a function of distance traveled
and time

3-4 Use a table of numerical values of f(x, y) for (x, y) near the
origin to make a conjecture about the value of the limit of f(x, y)

as (x, y) — (0, 0). Then explain why your guess is correct.
Xy + xyr =5 2xy
3. , e e—— 4. LY =
fly) = - f(xy) R

5-12 Find the limit. (,.

5. x2y? — 4y?
(x, })%(3 2) ( Y )
6. X%y + 3xy? + 4
oyl 72)( y ¥ )
. Xty — xy? X%y + xy?

2

lim lim >
=3 x —y+ 2 wy—@2-1n x°—y

lim  eV>™

9. lim sin(x —
Y ( v (x,y)—(3,2)

(x.y)=(m, 7/2)

B — 32
1.  lim b2 Y
(x,y)—(1,1)

xt—y? (y)—(m7/2)  COs X Cosy

cos y — sin 2y

- paiwn
. 2xy
(60,0 22 + 3y?

13-18 Show that the limit does not exist.

2

lim . 5 14.
@»=0.0 x* +y

+ 2
5. fim STV 16, lig
@—0.0 x* + y?

x2+ xy2
0.0 x*+ y?

y? sin’x

lim yo X
) 0.0 X + 3

lim @————
wy—=01n1—y+Inx

19-30 Find the limit, if it exists, or show that the limit does not
L ——

exist. ¢

&

19. lim (x?y — xy* + 3)°

(x, y)—>(=1,-2)

20. lim e™ sin xy
(x, y)—(m, 1/2)
3 — 2 2x —
21, lim > 22. oy

lim ————
(. y)—(1.2) 4x? — y?

A i Y
(v>)%(00>x +xy +y?

() —@2.3) 4x? — y?

xy cos y

23. lim
0.0 X7 +

)cz-i-y2
x2+y2+1-1

lim
(x, »)—(0,0)
) xy*

lim ————
(6.9)=(0,0) x* + y

27. lim . VX + z cos(my)

(x,y,2)—=(6, 1,

xy + yz

28. lim AT A e
(x.7,2)—(0,0,0) x2 + y2 + 2

xy + yz* + xz*

29. lim
(y.2=0.0,0 x* 4+ y* + z*

xt+yr+ 28

30. lim —_
(r.y.2—(0,0,0) x* + 2y? + z

31-34 Use the Squeeze Theorem to find the limit.

Xy

31.  lim xysin I
x2 + y?

(x, y)—(0,0)

32.

— lim
x*+y? (x,9)—(0,0)

xy4

33, lim ———
y)—0.0 x* + y

x?y?z?

34, lim —
2 a(ooo)x +y + z2

35-36 Use a graph of the function to explain why the limit does
not exist.

2x7 + 3xy + 4y° }
35 lim — 2 "7V 34 #
X4 y°

2 2 lim
(x.5)—(0,0) 3x* + Sy (x, v)~> (0,0)

37-38 Find A(x, y) = g(f(x, y)) and the set of points at which £
is continuous.

37. g(t) = * + Vi, fluy)=2x+3y -6

Xy

1_
38. g(t) =t + 1 -
g(ty =1+ 1Int, f(x,y) Ty

39-40 Graph the function and observe where it is discontinuous.
Then use the formula to explain what you have observed.

_ 1
39. f(x,y) = e/t 0. f(xy) = ——
1 —x

-y

41-50 Determine the set of points at which the function is

ntinuous. "
q—
X
F(x, =1+7yry 42. F(x,y) =cosy/l +x—y
e

1+ x*+y? et + e

Fxy) == 57 4. H(x,y) = ———

—Xx -y eV — 1
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45

LGl y) =x + /1 —x2—y?

46. G(x,y) = In(l + x —y)
47. f(x,y,z) = arcsin(x* + y* + z?)
48. f(x,y,z) =+y —x*Inz
X2y’
— if # (0,0
89, () ={ 222y T EDF00
1 if (x,y) = (0,0)
Xy .
—— |if # (0,0
50. f(x,y) =4 x>+ xy+y? it (x,y) #(0,0)
0 ift (x,y) = (0,0)

7

51-53 Use polar coordinates to find the limit. [If (r, 0) are
polar coordinates of the point (x, y) with r = 0, note that r — 0™
as (x,y) — (0, 0).]

X+

im 5 3
~{ (»)—0.0 x~+y

. e
e lim
(x,y)—(0,0)

1‘ 2+ 2 1 2+ 2
L (* + y?) In(x* + y?)

—x2—y? _ 1

x* + y?

14.3

54.

56.

57.

58.

59.

Partial Derivatives

SECTION 14.3 Partial Derivatives 961

Prove the three special limits in (2).

At the beginning of this section we considered the function

sin(x? + y?)

— flxy) = e

and guessed on the basis of numerical evidence that
f(x,y) — las (x,y) — (0, 0). Use polar coordinates to con-
firm the value of the limit. Then graph the function.

Graph and discuss the continuity of the function

sin

Xy

if xy#0
fluy) =9 xy
1 if xy=0
Let
_Jo ify<0 or y=ux*
f(x’y)_{l if0<y<x'

(a) Show that f(x,y) — 0as (x, y) — (0, 0) along any path
through (0, 0) of the form y = mx“ with 0 < a < 4.

(b) Despite part (a), show that f is discontinuous at (0, 0).

(c) Show that f is discontinuous on two entire curves.

Show that the function f given by f(x) = | x| is continuous
onR". [Hint: Consider |[x — a|* = (x —a) * (x — a).]

If ¢ € V,, show that the function f given by f(x) = ¢ * x is
continuous on R".

B Partial Derivatives of Functions of Two Variables

On a hot day, extreme humidity makes us think the temperature is higher than it really
is, whereas in very dry air we perceive the temperature to be lower than the thermom-
eter indicates. The National Weather Service has devised the heat index (also called the
temperature-humidity index, or humidex, in some countries) to describe the combined
effects of temperature and humidity. The heat index 7 is the perceived air tempera-
ture when the actual temperature is 7 and the relative humidity is H. So / is a function of
T and H and we can write I = f(T, H). The following table of values of 7 is an excerpt
from a table compiled by the National Weather Service.

Table 1 Heat index 7 as a function of temperature and humidity

Relative humidity (%)
T Hl 40 45 50 55 60 65 70 75 80
26 28 28 29 31 31 32 33 34 35
Actual 28 31 32 33 34 35 36 37 38 39
temperature | 30 34 35 36 37 38 40 41 42 43
O 32 37 38 39 41 42 43 45 46 47
34 41 42 43 45 47 48 49 51 52
36 43 45 47 48 50 51 53 54 56
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