m LIMITS (AN INTUITIVE APPROACH)
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1.1.1 LIMITS (AN INFORMAL VIEW) If the values of f(x) can be made as close as
we like to L by taking values of x sufficiently close to a (but not equal to a), then we

write

lim f(x)

®%

=L

e

O

which is read “the limit of f(x) as x approaches a is L” or “ f(x) approaches L as x
approaches a.” The expression in (6) can also be written as

f(x)—L as

X—da
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Bl ONE-SIDED LIMITS
The limit in (6) is called a two-sided limit because it requires the values of f(x) to get
closer and closer to L as values of x are taken from either side of x = a. However, some
functions exhibit different behaviors on the two sides of an x-value a, in which case it is
necessary to distinguish whether values of x near a are on the left side or on the right side
of a for purposes of investigating limiting behavior. For example, consider the function

|x|_[ I, x>0 (12)

f(x)ZT_ -1, x<0
which is graphed in Figure 1.1.12. As x approaches 0 from the right, the values of f(x)
approach a limit of 1 [in fact, the values of f(x) are exactly 1 for all such x], and similarly,
as x approaches 0 from the left, the values of f(x) approach a limit of —1. We denote these
limits by writing
ol okl
lim — =1 and lm — = -1 (13)
x—>0t Xx x—=>0" Xx
With this notation, the superscript “+ indicates a limit from the right and the superscript
“—" indicates a limit from the left.
This leads to the general idea of a one-sided limit.
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1.1.2 ONE-SIDED LIMITS (AN INFORMAL VIEW) If the values of f(x) can be made
as close as we like to L by taking values of x sufficiently close to a (but greater than a),
then we write

lim+ f(x)=1L (14)
and if the values of f(x) can be made as close as we like to L by taking values of x
sufficiently close to a (but less than a), then we write

lim f(x)=1L (15)
Expression (14) is read “the limit of f(x) as x approaches a from the right is L” or
“f(x) approaches L as x approaches a from the right.” Similarly, expression (15) is
read “the limit of f(x) as x approaches a from the left is L or * f(x) approaches L as
x approaches a from the left.”



B THE RELATIONSHIP BETWEEN ONE-SIDED LIMITS AND TWO-SIDED LIMITS

In general, there is no guarantee that a function f will have a two-sided limit at a given
point a; that is, the values of f(x) may not get closer and closer to any single real number
L as x — a. In this case we say that

lim f(x) does not exist
X—>da

Similarly, the values of f(x) may not get closer and closer to a single real number L as
x—a" oras x—a. In these cases we say that

lim+ f(x) does not exist

or that lim f(x) does not exist

X—>a-

In order for the two-sided limit of a function f(x) to exist at a point a, the values of f(x)
must approach some real number L as x approaches a, and this number must be the same
regardless of whether x approaches a from the left or the right. This suggests the following

result, which we state without formal proof.

1.1.3 THE RELATIONSHIP BETWEEN ONE-SIDED AND TWO-SIDED LIMITS The two-
sided limit of a function f(x) exists at a if and only if both of the one-sided limits exist
at a and have the same value; that is,

lim f(x) =L ifandonlyif lim f(x)=L= lim f(x)
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[l INFINITE LIMITS
Sometimes one-sided or two-sided limits fail to exist because the values of the function
increase or decrease without bound. For example, consider the behavior of f(x) = 1/x for
values of x near 0. It is evident from the table and graph in Figure 1.1.15 that as x-values
are taken closer and closer to O from the right, the values of f(x) = 1/x are positive and
increase without bound; and as x-values are taken closer and closer to O from the left, the
values of f(x) = 1/x are negative and decrease without bound. We describe these limiting
behaviors by writing )

lim — =40 and lim — = —w
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1.1.4 INFINITE LIMITS (AN INFORMAL VIEW) The expressions

lim f(x) =4 and lim+ f(x) = 4w

X—>a- X—da

denote that f(x) increases without bound as x approaches a from the left and from the
right, respectively. If both are true, then we write

lim f(x) = 4o
Similarly, the expressions

lim f(x) =—c and lim+ f(x) = —o0

denote that f(x) decreases without bound as x approaches a from the left and from the
right, respectively. If both are true, then we write

lim f(x) = —o
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