The photo shows comet Hale-Bopp as it passed the earth in 1997, due to return in 4380. One of the brightest comets of the past century,
Hale-Bopp could be observed in the night sky by the naked eye for about 18 months. It was named after its discoverers Alan Hale and
Thomas Bopp, who first obse ved it by telescope in 1995 (Hale in New Mexico and Bopp in Arizona). In Section 10.6 you will see how
polar coordinates provide a convenient equation for the elliptical path of the comet’s orbit.
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SO FAR WE HAVE DESCRIBED plane curves by giving y as a function of x [y = f(x)] or x as a
function of y [x = g(y)] or by giving a relation between x and y that defines y implicitly as a func-
tion of x [ f(x, y) = 0]. In this chapter we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both x and y are given in terms of a
third variable 7 called a parameter [x = f(7), y = g(¢)]. Other curves, such as the cardioid, have
their most convenient description when we use a new coordinate system, called the polar coordi-



Mobile User


662

CHAPTER 10 Parametrj

FIGURE 1

uations and Polar Coordinates

Curves Defined by Parametric Equations

Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to
describe C by an equation of the form y = f(x) because C fails the Vertical Line Test.
But the x- and y-coordinates of the particle are functions of time ¢ and so we can write
x = f(r) and y = g(r). Such a pair of equations is often a convenient way of describing a

curve.
4

C

y
e

=

YI Parametric Equation

Suppose that x and y are both given as functions of a third variable ¢, called a parameter,

by the equations N N TN
=50 Js=q0)

which are called parametric equations. Each value of ¢ determines a point (x, y), which
we can plot in a"COOTATATE PTATE. As ¢ varies, the point (x, y) = (f(), g(1)) varies and
traces out a curve called a parametric curve. The parameter ¢ does not necessarily rep-
resent time and, in fact, we could use a letter other than 7 for the parameter. But in many
applications of parametric curves, ¢ does denote time and in this case we can interpret
(x,y) = (f(2), g(1)) as the position of a moving object at time 7.

™
EXAMPLE 1 and identify the curvedefined by the parametric equations
x=1 =2t dy=t+ 1<
™
SOLUTION Each value of 7 gives a point on the curve, as shown in the table. For
instance, if 7 = 1, then x = —1, y = 2 and so the corresponding point is (—1, 2). In Fig-

ure 2 we plot the points (x, y) determined by several values of the parameter and we
join them to produce a curve.

- | xe| y- ) (SI“S ‘x(z'é)
N =) .'—9 Semy —1
—1 ) 3t O 3 t=2

0 0 1 _

1:1 -1 ) (@ ‘E"?;_

2 0 otnd 3 f?o

3 3 A4 -\)0 X
/ !
) 4 @ N;_ (3,°) t=-2

FIGURE 2 1.91")
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It is not always possible to eliminate
the parameter from parametric equa-
tions. There are many parametric
curves that don’t have an equivalent
representation as an equation in x
and y.

y

0,1) l‘&b
-
0 ® - X
-
S -
FIGURE 3
r=5”\";
(cos 1, sin 1)
t=0
t=1m t 4
0 N(1,0) X
t=2
p=327
FIGURE 4
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A particle whose position at time 7 is given by the parametric equations moves along
the curve in the direction of the arrows as ¢ increases. Notice that the consecutive points
marked on the curve appear at equal time intervals but not at equal distances. That is
because the particle slows down and then speeds up as 7 increases.

It appears from Figure 2 that the curve traced out by the particle may be a parabola.
In fact, from the second equation we obtain r = y — 1 and substitution into the first
equation gives

x=t'—2t=(y—-1P2-2(y—1)=y>*—4y+3

Since the equation x = y* — 4y + 3 is satisfied for all pairs of x- and y-values gener-
ated by the parametric equations, every point (x, y) on the parametric curve must lie on
the parabola x = y* — 4y + 3 and so the parametric curve coincides erﬁ}t
of this parabola. Because 7 can be chosen to make y any real number, we know that the
parametric curve is the entire parabola. )

In Example 1 we found a Cartesian equation in x and y whose graph coincided with
the curve represented by parametric equations. This process is called eliminating the
parameter; it can be helpful in identifying the shape of the parametric curve, but we lose
some information in the process. The equation in x and y describes the curve the particle
travels along, whereas the parametric equations have additional advantages—they tell us
where the particle is at any given time and indicate the direction of motion. If you think
of the graph of an equation in x and y as a road, then the parametric equations could track
the motion of a car traveling along the road.

No restriction was placed on the parameter 7 in Example 1, so we assumed that 7 could

(8.5) ‘-a“ be any real number (including negative numbers). But sometimes we restrict 7 to lie in a

particular interval. For instance, the parametric curve

x=t2—2t y=t+1 0st<4
shown in Figure 3 is the part of the parabola in Example 1 that starts at the point (0, 1)
and ends at the point (8, 5). The arrowhead indicates the direction in which the curve is
traced as ¢ increases from 0 to 4.

In general, the curve with parametric equations

x = f(r) y = g(1) as<t<bh
has initial point ( f(a), g(a)) and terminal point ( (b), g(b)).
T e s O ™

EXAMPLE 2 What curve is represented by the following parametric equations?
. —
(\_,—/

X =cost y =sint
e e

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm this
by eliminating the parameter 7. Observe that

x? + y* = cos’t + sin’t = 1

Because x* + y> = 1 is satisfied for all pairs of x- and y-values generated by the

. . . . . 2 2 .
parametric equations, the point (x, y) moves along the unit circle x> + y* = 1. Notice
that in this example the parameter 7 can be interpreted as the angle (in radians) shown
in Figure 4. As ¢ increases from 0 to 277, the point (x, y) = (cos 7, sin 7) moves once
around the circle in the counterclockwise direction starting from the point (1, 0). o
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942»-)‘19 {

EXAMPLE 3 What curve is represented bygthe given parametric equations?

e o
x=sm@ y=cosg:’ O0sr<=2w
O —

SOLUTION Again we have

%%+ y? =$sin2 (21) + cos?(21) = 1 >
X —

so the parametric equations again represent the unit circle x*> + y> = 1. But as ¢

increases from 0 to 277, the poin = (sin 2¢, cos 21) starts at (0, 1) and moves
twice around the circle in the @ direction as indicated in Figure 5. |

EXAMPLE 4 Find parametric equations for the circle with center (h, k) and radius r.
FIGURE 5 T N
SOLUTION One way is to take the parametric equations of the unit circle in Example 2

and multiply the expressions for x and y by r, giving x = r cos ¢, y = r sin t. You can
y verify that these equations represent a circle with radius r and center the origin, traced
counterclockwise. We now shift / units in the x-direction and & units in the y-direction
and obtain parametric equations of the circle (Figure 6) with center (h, k) and radius r:

x=h+ rcost y=k+ rsint O0<t<2w [}
Il

NOTE Examples 2 and 3 show that different parametric equations can represent the
0 x same curve. Thus we distinguish between a curve, which is a set of points, and a
parametric curve, in which the points are traced out in a particular way.

FIGURE 6
x=h+rcost,y=k+ rsint In the next example we use parametric equations to describe the motions of four dif-
ferent particles traveling along the same curve but in different ways.

EXAMPLE 5 Each of the following sets of parametric equations gives the position of a
moving particle at time 7.

@) x=1ty, y=p¢ (b) x=4t3, y=d‘—t
2| Y . 420 ot | et

(c) x=1"", y=_it_ 7 dx=e, y=e
In each case, elimjrﬁing the parameter gives x = y°, so each particle moves along the L

,._.\ "\ cubic curve x = y*; however, the particles move in different ways, as illustrated in u

0 Figure 7. . " a\ 'Q“ - 0’0‘
0 (a) The particle moves from left to right as 7 increases. Y= qg
(b) The particle moves from right to left as 7 increases.
\ \ ‘ (c) The equations are defined only for # = 0. The particle starts at the origin (where ‘4

t = 0) and moves to the right as 7 increases. ‘. 22

(d) Here x > 0 and y > 0 for all 7. The particle moves from right to left and
approaches the point (1,1) as 7 increases (through negative values) toward 0. As ¢ fur-
ther increases, the particle approaches, but does not reach, the origin. o0

y
o .
) $
X 0 *2q°q X
(a)x==1,y=t b)x=—,y=—t (c) x=1£"2, y= \/7 dyx=e,y=e¢"
FIGURE 7 m
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EXAMPLE @ e curve with parametric equationn2t.

SOLUTION Observe that y = (sin #)*> = x* and so the point (x, y) moves on the
parabola y = x2. But note also that, since —1 <sinf < 1, wehave =1 < x < 1, so
the parametric equations represent only the part of the parabola for which —1 = x < 1.
Since sin 7 is periodic, the point (x, y) = (sin ¢, sin’#) moves back and forth infinitely
often along the parabola from (—1, 1) to (1, 1). (See Figure 8.) o

EXAMPLE 7 The curve represented by the parametric equations x = cos ¢, y = sin 2¢
is shown in Figure 9. It is an example of a Lissajous figure (see Exercise 63). It is
possible to eliminate the parameter, but the resulting equation (y* = 4x* — 4x*) isn’t
very helpful. Another way to visualize the curve is to first draw graphs of x and y
individually as functions of 7, as shown in Figure 10.

_l_,

X=cost,y=sin2t

FIGURE 9

FIGURE 11

(=)
IE]
3

27t

' I \/ﬂ \,/zn |
—14 -

x=cost y=sin 2t

[y

FIGURE 10

We see that as 7 increases from 0 to /2, x decreases from 1 to 0 while y starts at 0,
increases to 1, and then returns to 0. Together these descriptions produce the portion of
the parametric curve that we see in the first quadrant. If we proceed similarly, we get
the complete curve. (See Exercises 31-33 for practice with this technique.) [}

B Graphing Parametric Curves with Technology

Most graphing software applications and graphing calculators can graph curves defined
by parametric equations. In fact, it’s instructive to watch a parametric curve being
drawn by a graphing calculator because the points are plotted in order as the corre-
sponding parameter values increase.

The next example shows that parametric equations can be used to produce the graph
of a Cartesian equation where x is expressed as a function of y. (Some calculators, for
instance, require y to be expressed as a function of x.)

EXAMPLE 8 Use a calculator or computer to graph the curve x = y* — 3y
SOLUTION If we let the parameter be r = y, then we have the equations
x=1t"—= 3 y=t

Using these parametric equations to graph the curve, we obtain Figure 11. It would be
possible to solve the given equation (x = y* — 3y?) for y as four functions of x and
graph them individually, but the parametric equations provide a much easier method. M
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0/

FIGURE 12
x =1+ sin 5t
y =1+ sin 67

FIGURE 15

In general, to graph an equation of the form x = g(y), we can use the parametric
equations

x=g() y=t

In the same spirit, notice that curves with equations y = f(x) (the ones we are most
familiar with—graphs of functions) can also be regarded as curves with parametric
equations

x=t y=f@

Graphing software is particularly useful for sketching complicated parametric curves.
For instance, the curves shown in Figures 12, 13, and 14 would be virtually impossible to
produce by hand.

4 3.5

<y « 4 -3.5 35
4 -3.5

FIGURE 13 FIGURE 14

Xx = cos t + cos 61 + 2 sin 3¢ x = 2.3 cos 107 + cos 23t

y =sint + sin 67 + 2 cos 3¢ y = 2.3 sin 10¢ — sin 23¢

One of the most important uses of parametric curves is in computer-aided design
(CAD). In the Discovery Project after Section 10.2 we will investigate special parametric
curves, called Bézier curves, that are used extensively in manufacturing, especially in
the automotive industry. These curves are also employed in specifying the shapes of let-
ters and other symbols in PDF documents and laser printers.

B The Cycloid

EXAMPLE 9 The curve traced out by a point P on the circumference of a circle as
the circle rolls along a straight line is called a eycloid. (Think of the path traced out
by a pebble stuck in a car tire; see Figure 15.) If the circle has radius r and rolls
along the x-axis and if one position of P is the origin, find parametric equations for
the cycloid.

N QO N N
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SOLUTION We choose as parameter the angle of rotation 6 of the circle (§ = 0 when
P is at the origin). Suppose the circle has rotated through 6 radians. Because the circle
has been in contact with the line, we see from Figure 16 that the distance it has rolled
from the origin is

|OT| = arc PT = r6

Therefore the center of the circle is C(r6, r). Let the coordinates of P be (x, y). Then
from Figure 16 we see that

x=|0T| - |PQ|=1r6—rsinf = r(0 — sinh)
y=|TC| = |QC|=r—rcosh = r(1 — cosh)

Therefore parametric equations of the cycloid are
[1] x=r(0 — sinf) y=r(l — cosh) hER

One arch of the cycloid comes from one rotation of the circle and so is described by

0 < 6 =< 2. Although Equations 1 were derived from Figure 16, which illustrates the
case where 0 < 6 < 7r/2, it can be seen that these equations are still valid for other
values of 6 (see Exercise 48).

Although it is possible to eliminate the parameter 6 from Equations 1, the resulting
Cartesian equation in x and y is very complicated [x = rcos™'(1 — y/r) — /2ry — y?
gives just half of one arch] and not as convenient to work with as the parametric
equations. |

One of the first people to study the cycloid was Galileo; he proposed that bridges be
built in the shape of cycloids and tried to find the area under one arch of a cycloid. Later
this curve arose in connection with the brachistochrone problem: Find the curve along
which a particle will slide in the shortest time (under the influence of gravity) from a
point A to a lower point B not directly beneath A. The Swiss mathematician John
Bernoulli, who posed this problem in 1696, showed that among all possible curves that
join A to B, as in Figure 17, the particle will take the least time sliding from A to B if the
curve is part of an inverted arch of a cycloid.

The Dutch physicist Huygens had already shown by 1673 that the cycloid is also the
solution to the tautochrone problem; that is, no matter where a particle P is placed on
an inverted cycloid, it takes the same time to slide to the bottom (see Figure 18). Huygens
proposed that pendulum clocks (which he invented) should swing in cycloidal arcs
because then the pendulum would take the same time to make a complete oscillation
whether it swings through a wide arc or a small arc.

B Families of Parametric Curves

EXAMPLE 10 Investigate the family of curves with parametric equations
X=a + cost y=atant + sint
What do these curves have in common? How does the shape change as a increases?

SOLUTION We use a graphing calculator (or computer) to produce the graphs for the
casesa = —2, —1, —0.5, —0.2, 0, 0.5, 1, and 2 shown in Figure 19. Notice that all of
these curves (except the case a = 0) have two branches, and both branches approach
the vertical asymptote x = a as x approaches a from the left or right.
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FIGURE 19

Members of the family x = a + cos 1,
y = atant + sint, all graphed in the
viewing rectangle [—4, 4] by [—4, 4]

_L/_C__

When a < —1, both branches are smooth; but when a reaches — 1, the right branch
acquires a sharp point, called a cusp. For a between — 1 and 0 the cusp turns into a
loop, which becomes larger as a approaches 0. When a = 0, both branches come

together and form a circle (see Example 2). For a between 0 and 1, the left branch has a
loop, which shrinks to become a cusp when @ = 1. For @ > 1, the branches become
smooth again, and as a increases further, they become less curved. Notice that the
curves with a positive are reflections about the y-axis of the corresponding curves with

a negative.

These curves are called conchoids of Nicomedes after the ancient Greek scholar
Nicomedes. He called them conchoids because the shape of their outer branches
resembles that of a conch shell or mussel shell. ]

10.1 | Exercises

1-2 For the given parametric equations, find the points (x, y)
corresponding to the parameter values r = —2, —1,0, 1, 2.

l.x=t*+1 y=3"

2. x=In(t*+1), y=t/(t+4)

3-6 Sketch the curve by using the parametric equations to plot
points. Indicate with an arrow the direction in which the curve is
traced as ¢ increases.

"
S}

3.x=1—-1¢% y=2t—1¢, —-1<t¢
x=t'+t y=t*+2 -2sts<2

4.
S5.x=2"—1, y=2"+41 -3sr1<3
6.

x=cos’t, y=1+cost, O0st<m

7-12

(a) Sketch the curve by using the parametric equations to plot
points. Indicate with an arrow the direction in which the curve
is traced as ¢ increases.

(b) Eliminate the parameter to find a Cartesian equation of the
curve.

7.x=2t—1, y=1r+1

8. x=3t+2, y=2t+3

9. x=t"-3, y=t+2, -3st=<3
10. x=sin?z, y=1—cost, 0=t=<27
1. x \/t_ y=1-1t

12, x=1%, y=i?

13-22

(a) Eliminate the parameter to find a Cartesian equation of the
curve.

(b) Sketch the curve and indicate with an arrow the direction in
which the curve is traced as the parameter increases.

13. x=3cost, y=3sint, O0sr=m
14. x =sin46, y=cos46, 0<60<m/2
15. x =cosf, y=sec’d, 0=60<m/2
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16. x =csct, y=cott, 0<t<m
17. x=¢e", y=e

18. x=1t+2, y=1/t, t>0
19. x=Inr, y=4+r, t=1
20, x=]e, y=|1-tf

21. x =sin’t, y = cos’t

22, x =sinht, y=cosht

23-24 The position of an object in circular motion is modeled by
the given parametric equations, where 7 is measured in seconds.
How long does it take to complete one revolution? Is the motion
clockwise or counterclockwise?

23. x=>5cost, y= —5sint

24, x = 3si 11 =3 ‘11
. X S 4 sy Y= CcOs 4

25-28 Describe the motion of a particle with position (x, y) as
varies in the given interval.

25. x=5+2coswt, y=3+2sinmt, 1l=st<2
26. x=2+sint, y=1+3cost, w/2<t<2mw
27. x=15sint, y=2cost, —mwm=<1t=<>5T

28. x =sint, y=cos’t, —2w<t<2mw

29. Suppose a curve is given by the parametric equations
x = f(t), y = g(1), where the range of f is [ 1, 4] and the
range of g is [2, 3]. What can you say about the curve?

30. Match each pair of graphs of equations x = f(1), y = ¢(7) in
(a)—(d) with one of the parametric curves x = f(1), y = g(1)
labeled I-IV. Give reasons for your choices.

(a) I

— [®)
>
Q

(5]

N =
~
e
Q
]

4

VY AT
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(c) I
Y y ¥y
2 f q 1

(d) v

V=S >

31-33 Use the graphs of x = f(7) and y = g(z) to sketch the
parametric curve x = f(z), y = g(1). Indicate with arrows the
direction in which the curve is traced as 7 increases.

31. X

¥
14 i i 14
1t

(35}

1 7
32. X y
Ll 1<&
=] 11 v 1
33. X y
1 14+
0 1 i 1 2

34. Match the parametric equations with the graphs labeled I-VI.
Give reasons for your choices.

%

@ x=t"—t+1, y=t

b x=1>=2t, y=+t
© x=13-2t, y=t>—t
(d) x =cos5t, y=sin2t

(e) x=1+sindt, y=1>+ cos3t
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