
Our analytical toolbox now contains Ohm’s law and Kirchhoff’s
laws. In Chapter 2 we used these tools in solving simple circuits.
In this chapter we continue applying these tools, but on more-
complex circuits. The greater complexity lies in a greater number
of elements with more complicated interconnections. This chap-
ter focuses on reducing such circuits into simpler, equivalent cir-
cuits. We continue to focus on relatively simple circuits for two
reasons: (1) It gives us a chance to acquaint ourselves thoroughly
with the laws underlying more sophisticated methods, and (2) it
allows us to be introduced to some circuits that have important
engineering applications.

The sources in the circuits discussed in this chapter are lim-
ited to voltage and current sources that generate either constant
voltages or currents; that is, voltages and currents that are invari-
ant with time. Constant sources are often called dc sources. The
dc stands for direct current, a description that has a historical basis
but can seem misleading now. Historically, a direct current was
defined as a current produced by a constant voltage. Therefore, a
constant voltage became known as a direct current, or dc, voltage.
The use of dc for constant stuck, and the terms dc current and 
dc voltage are now universally accepted in science and engineering
to mean constant current and constant voltage.
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C H A P T E R  O B J E C T I V E S

1 Be able to recognize resistors connected in
series and in parallel and use the rules for
combining series-connected resistors and
parallel-connected resistors to yield equivalent
resistance.

2 Know how to design simple voltage-divider and
current-divider circuits.

3 Be able to use voltage division and current
division appropriately to solve simple circuits.

4 Be able to determine the reading of an ammeter
when added to a circuit to measure current; be
able to determine the reading of a voltmeter
when added to a circuit to measure voltage.

5 Understand how a Wheatstone bridge is used to
measure resistance.

6 Know when and how to use delta-to-wye
equivalent circuits to solve simple circuits.

Simple Resistive Circuits
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Some mobile phones and tablet computers use resistive touch
screens, created by applying a transparent resistive material
to the glass or acrylic screens.  Two screens are typically used,
separated by a transparent insulating layer. The resulting
touch screen can be modeled by a grid of resistors in the 
x-direction and a grid of resistors in the y-direction, as shown
in the figure on the right.

A separate electronic circuit applies a voltage drop across
the grid in the x-direction, between the points a and b in the
circuit, then removes that voltage and applies a voltage drop
across the grid in the y-direction (between points c and d),

and continues to repeat this process. When the screen is
touched, the two resistive layers are pressed together, creating
a voltage that is sensed in the x-grid and another voltage that
is sensed in the y-grid. These two voltages precisely locate the
point where the screen was touched.

How is the voltage created by touching the screen related
to the position where the screen was touched? How are the
properties of the grids used to calculate the touch position? We
will answer these questions in the Practical Perspective at the
end of this chapter. The circuit analysis required to answer these
questions uses some circuit analysis tools developed next.

79
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c

b
d

Practical Perspective
Resistive Touch Screens

Denis Semenchenko / Shutterstock
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80 Simple Resistive Circuits
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3.1 Resistors in Series
In Chapter 2, we said that when just two elements connect at a single
node, they are said to be in series. Series-connected circuit elements carry
the same current. The resistors in the circuit shown in Fig. 3.1 are con-
nected in series. We can show that these resistors carry the same current
by applying Kirchhoff’s current law to each node in the circuit. The series
interconnection in Fig. 3.1 requires that

(3.1)

which states that if we know any one of the seven currents, we know them
all. Thus we can redraw Fig. 3.1 as shown in Fig. 3.2, retaining the identity
of the single current 

To find we apply Kirchhoff’s voltage law around the single closed
loop. Defining the voltage across each resistor as a drop in the direction of

gives

(3.2)

or

(3.3)

The significance of Eq. 3.3 for calculating is that the seven resistors can
be replaced by a single resistor whose numerical value is the sum of the
individual resistors, that is,

(3.4)

and

(3.5)

Thus we can redraw Fig. 3.2 as shown in Fig. 3.3.
In general, if k resistors are connected in series, the equivalent single

resistor has a resistance equal to the sum of the k resistances, or

(3.6)

Note that the resistance of the equivalent resistor is always larger than
that of the largest resistor in the series connection.

Another way to think about this concept of an equivalent resistance is
to visualize the string of resistors as being inside a black box. (An electri-
cal engineer uses the term black box to imply an opaque container; that is,
the contents are hidden from view. The engineer is then challenged to
model the contents of the box by studying the relationship between the
voltage and current at its terminals.) Determining whether the box con-
tains k resistors or a single equivalent resistor is impossible. Figure 3.4
illustrates this method of studying the circuit shown in Fig. 3.2.

Req = a
k

i = 1
Ri = R1 + R2 + Á + Rk.

vs = isReq.

Req = R1 + R2 + R3 + R4 + R5 + R6 + R7

is

vs = is(R1 + R2 + R3 + R4 + R5 + R6 + R7).

-vs + isR1 + isR2 + isR3 + isR4 + isR5 + isR6 + isR7 = 0,

is

is,
is.

is = i1 = - i2 = i3 = i4 = - i5 = - i6 = i7,

Combining resistors in series !

!

"
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h

is

R4 Req
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Figure 3.1 " Resistors connected in series.

Figure 3.2 " Series resistors with a single unknown 
current is.

Figure 3.3 " A simplified version of the circuit shown
in Fig. 3.2.

Figure 3.4 " The black box equivalent of the circuit
shown in Fig. 3.2.
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3.2 Resistors in Parallel 81

3.2 Resistors in Parallel
When two elements connect at a single node pair, they are said to be in
parallel. Parallel-connected circuit elements have the same voltage across
their terminals. The circuit shown in Fig. 3.5 illustrates resistors connected
in parallel. Don’t make the mistake of assuming that two elements are
parallel connected merely because they are lined up in parallel in a circuit
diagram.The defining characteristic of parallel-connected elements is that
they have the same voltage across their terminals. In Fig. 3.6, you can see
that and are not parallel connected because, between their respec-
tive terminals, another resistor dissipates some of the voltage.

Resistors in parallel can be reduced to a single equivalent resistor
using Kirchhoff’s current law and Ohm’s law, as we now demonstrate. In
the circuit shown in Fig. 3.5, we let the currents and be the cur-
rents in the resistors through respectively. We also let the positive
reference direction for each resistor current be down through the resistor,
that is, from node a to node b. From Kirchhoff’s current law,

(3.7)

The parallel connection of the resistors means that the voltage across each
resistor must be the same. Hence, from Ohm’s law,

(3.8)

Therefore,

(3.9)

Substituting Eq. 3.9 into Eq. 3.7 yields

(3.10)

from which

(3.11)

Equation 3.11 is what we set out to show: that the four resistors in the cir-
cuit shown in Fig. 3.5 can be replaced by a single equivalent resistor. The
circuit shown in Fig. 3.7 illustrates the substitution. For k resistors con-
nected in parallel, Eq. 3.11 becomes

(3.12)

Note that the resistance of the equivalent resistor is always smaller than the
resistance of the smallest resistor in the parallel connection. Sometimes,

1
Req

= a
k

i = 1
 

1
Ri

= 1
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+ 1
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+ Á + 1
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.

 
is

vs
= 1
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.

 is = vs ¢ 1
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+ 1
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+ 1
R3

+ 1
R4
≤ ,

  i4 =
vs

R4
.

 i3 =
vs

R3
, and

 i2 =
vs

R2
,

 i1 =
vs

R1
,

i1R1 = i2R2 = i3R3 = i4R4 = vs.

is = i1 + i2 + i3 + i4.

R4,R1

i4i1, i2, i3,

R3R1

R1 R2 R3 R4

a

b

isvs
!

"

R3R1

R2

Figure 3.5 " Resistors in parallel.

Figure 3.6 " Nonparallel resistors.

!

"
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a

b
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# Combining resistors in parallel

Figure 3.7 " Replacing the four parallel resistors shown
in Fig. 3.5 with a single equivalent resistor.
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82 Simple Resistive Circuits

using conductance when dealing with resistors connected in parallel is more
convenient. In that case, Eq. 3.12 becomes

(3.13)

Many times only two resistors are connected in parallel. Figure 3.8
illustrates this special case. We calculate the equivalent resistance from
Eq. 3.12:

(3.14)

or

(3.15)

Thus for just two resistors in parallel the equivalent resistance equals
the product of the resistances divided by the sum of the resistances.
Remember that you can only use this result in the special case of just two
resistors in parallel. Example 3.1 illustrates the usefulness of these results.

Req =
R1R2

R1 + R2
.

1
Req

= 1
R1

+ 1
R2

=
R2 + R1

R1R2
,

Geq = a
k

i = 1
 Gi = G1 + G2 + Á + Gk.

R2R1

a

b

Example 3.1 Applying Series-Parallel Simplification

Find and in the circuit shown in Fig. 3.9.

Solution
We begin by noting that the resistor is in series
with the resistor.We therefore replace this series
combination with a resistor, reducing the circuit
to the one shown in Fig. 3.10(a). We now can replace
the parallel combination of the and resis-
tors with a single resistance of or

Figure 3.10(b) shows this further reduction of
the circuit.The nodes x and y marked on all diagrams
facilitate tracing through the reduction of the circuit.

From Fig. 3.10(b) you can verify that equals
or 12 A. Figure 3.11 shows the result at this

point in the analysis. We added the voltage to
help clarify the subsequent discussion. Using Ohm’s
law we compute the value of :

(3.16)

But is the voltage drop from node x to node y, so
we can return to the circuit shown in Fig. 3.10(a)
and again use Ohm’s law to calculate and Thus,

(3.17)

(3.18)

We have found the three specified currents by using
series-parallel reductions in combination with
Ohm’s law.

 i2 =
v1

9
= 72

9
= 8 A.

 i1 =
v1

18
= 72

18
= 4 A,

i2.i1

v1

v1 = (12)(6) = 72 V.

v1

v1

120>10,
is

6 Æ.
(18 * 9)>(18 + 9),

18 Æ9 Æ

9 Æ
6 Æ

3 Æ

i2is , i1 ,

6 #

x

y

4 #

(b)

120 V

18 # 9 #

x

y

4 #

(a)

120 V

is

is
i1 i2

!

"

!

"

v1 6 #

x

y

4 #

120 V
12 A

!
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Figure 3.11 " The circuit of Fig. 3.10(b) showing the numerical
value of is .

Figure 3.9 " The circuit for Example 3.1.

18 # 6 #

x

y

4 # 3 #

120 V
is

i1 i2
!

"

Figure 3.8 " Two resistors connected in parallel.

Figure 3.10 " A simplification of the circuit shown in Fig. 3.9.
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3.3 The Voltage-Divider and Current-Divider Circuits 83

Before leaving Example 3.1, we suggest that you take the time to
show that the solution satisfies Kirchhoff’s current law at every node and
Kirchhoff’s voltage law around every closed path. (Note that there are
three closed paths that can be tested.) Showing that the power delivered
by the voltage source equals the total power dissipated in the resistors also
is informative. (See Problems 3.1 and 3.2.)

Objective 1—Be able to recognize resistors connected in series and in parallel

A S S E S S M E N T  P R O B L E M

3.1 For the circuit shown, find (a) the voltage ,
(b) the power delivered to the circuit by the
current source, and (c) the power dissipated in
the resistor.

Answer: (a) 60 V;
(b) 300 W;
(c) 57.6 W.

10 Æ

v

64 #30 # 10 #

6 #7.2 #

5 A v

!

"

NOTE: Also try Chapter Problems 3.3–3.6.

3.3 The Voltage-Divider 
and Current-Divider Circuits

At times—especially in electronic circuits—developing more than one
voltage level from a single voltage supply is necessary. One way of doing
this is by using a voltage-divider circuit, such as the one in Fig. 3.12.

We analyze this circuit by directly applying Ohm’s law and
Kirchhoff’s laws.To aid the analysis, we introduce the current i as shown in
Fig. 3.12(b). From Kirchhoff’s current law, and carry the same cur-
rent. Applying Kirchhoff’s voltage law around the closed loop yields

(3.19)

or

(3.20)

Now we can use Ohm’s law to calculate and :

(3.21)

(3.22)

Equations 3.21 and 3.22 show that and are fractions of Each frac-
tion is the ratio of the resistance across which the divided voltage is
defined to the sum of the two resistances. Because this ratio is always less
than 1.0, the divided voltages and are always less than the source
voltage vs.

v2v1

vs.v2v1

 v2 = iR2 = vs
R2

R1 + R2
.

 v1 = iR1 = vs
R1

R1 + R2
,

v2v1

i =
vs

R1 + R2
.

vs = iR1 + iR2,

R2R1

R1

R2

vs

v1

v2

(a)

R1

R2

vs

v1

v2

(b)

!

"!

" !

"

!

"!

" !

"

i

Figure 3.12 " (a) A voltage-divider circuit and (b) the
voltage-divider circuit with current indicated.i
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