FUNCTIONS

الدرال

A <u>function</u> is a relation in which each element of the domain is paired with <u>exactly one</u> element of the range. Another way of saying it is that there is <u>one and only one</u> output (y) with each input (x).

FUNCTION NOTATION

4.1 # Exponential Functions

- A polynomial function has the basic form: $f(x) = x^3$
- An exponential function has the basic form: $f(x) = 3^x$
- An exponential function has the variable in the <u>exponent</u>, <u>not</u> in the <u>base</u>.
- General Form of an Exponential Function:

EXPONENTIAL FUNCTIONS

The **exponential function with base** a is defined for all real numbers x by

where a > 0 and $a \neq 1$.

We assume that $a \ne 1$ because the function $f(x) = 1^x = 1$ is just a constant function. Here are some examples of exponential functions:

$$f(x) = 2^x$$
 $g(x) = 3^x$ $h(x) = 10^x$

Base 3 Base

Properties of Exponents

Simplify: $\left(\frac{2}{3}\right)^{-3} = \frac{2^{-3}}{3^{-3}} = \frac{3^3}{2^3} = \frac{27}{8}$

$$\frac{3^7}{3^9} = \frac{3^{-2}}{3^{-2}} = \frac{1}{3^2} = \frac{1}{9}$$

 $(2^{\frac{1}{2}})(8^{\frac{1}{2}}) = (2 \cdot 8)^{\frac{1}{2}} = 16^{\frac{1}{2}} = \sqrt{16} = 4$

$$#3^{2} \cdot 3 = 3 = 3^{-3} = \frac{1}{3^{3}} = \frac{1}{27}$$

المدال ل

base

EXAMPLE 1 Evaluating Exponential Functions

Let $f(x) = 3^x$, and evaluate the following:

(a)
$$f(5)$$

(b)
$$f(-\frac{2}{3})$$

(c)
$$f(\pi)$$

(d)
$$f(\sqrt{2})$$

SOLUTION We use a calculator to obtain the values of
$$f$$
.
$$f(x) = 3$$

$$a = 3.3.3.3.3 = 243$$

b)
$$f(-\frac{2}{3}) = 3^{-\frac{2}{3}} = \frac{1}{3^{\frac{2}{3}}} \approx 0...$$

c) $f(\pi) = 3^{\frac{1}{3}}$
d) $f(\sqrt{2}) = 3^{\frac{1}{3}}$

7–10 ■ Evaluating Exponential Functions Use a calculator to evaluate the function at the indicated values. Round your answers to three decimals.

7.
$$f(x) = 4^x$$
; $f(\frac{1}{2}), f(\sqrt{5}), f(-2), f(0.3)$

$$f(x) = 3^{x-1}; f(\frac{1}{2}), f(2.5), \underbrace{f(-1)}, f(\frac{1}{4})$$

9.
$$g(x) = (\frac{1}{3})^{x+1}$$
; $g(\frac{1}{2}), g(\sqrt{2}), g(-3.5), g(-1.4)$

7)
$$f(/2) = 4^{1/2} = \sqrt{4} = 2$$

 $f(\sqrt{5}) = 4^{1/5}$
 $f(-2) = f(0.3) = 4$

8)
$$f(x) = 3^{x-1}$$

a)
$$f(x) = 3$$

$$= 3^{1/2} = \frac{1}{3^{1/2}} = \frac{1}{\sqrt{3}} \times \sqrt{3}$$
a) $f(x) = 3$

b)
$$f(2.5) = 3 = 3$$

$$\sqrt{c}$$
 $f(-1) = 3 = \frac{-1-1}{3^2} = \frac{1}{9}$

d)
$$f(/4) = 3 = -3/4 = \frac{1}{3^{3/4}}$$

1. The function
$$f(x) = 5^x$$
 is an exponential function with base $\frac{5}{5^2}$; $f(-2) = \frac{5^2}{5^2} = \frac{1}{25} = \frac{1}{5} = \frac{$

$$\# f(x) = a^{x}$$

GRAPHS OF EXPONENTIAL FUNCTIONS

The exponential function

$$f(x) = a^x$$
 $a > 0, a \ne 1$

has domain \mathbb{R} and range $(0, \infty)$. The line y = 0 (the x-axis) is a horizontal asymptote of f. The graph of f has one of the following shapes.

Graph

D Substitution

$$x = v - y = v$$

$$-\frac{3}{-2}$$

2 Key points Graph

EXAMPLE 2 Graphing Exponential Functions by Plotting Points

Draw the graph of each function.

_3 > 3 =	1 3 ³	= 1
3-1=	31	3
3 =	1	

$$3^{2} = 9$$
 $3^{3} = 27$

(b)
$$g(x) = \left(\frac{1}{3}\right)^x > 0 < \frac{1}{3} < 1$$

x	$g(x) = \left(\frac{1}{3}\right)^x$	C_{-3} n_{1}^{-3} n_{3}^{-3}	= 27 = 2
$\frac{-3}{-2}$	27 9	$- b \left(\frac{1}{3}\right)^{-3} = \left(\frac{1}{3} - 3\right) = \frac{3}{13}$	1
$\frac{-1}{0}$	3	$- (\frac{1}{3})^{\circ} = 1$	\
1 2	$\frac{1}{3}$	$= \left(\frac{1}{3}\right)^2 = \frac{1^2}{3^2} = \frac{1}{9}$	management
3	$\frac{1}{27}$		-3 -2

Points on the graph method

Keypoints to plot Exponential function $\frac{1}{2}$ $\left(-3,\frac{1}{3}\right)\left(-2,\frac{1}{3}\right)\left(-1,\frac{1}{3}\right)\left(\stackrel{\circ}{0},\stackrel{\circ}{1}\right)\left(\stackrel{\circ}{1},\stackrel{\circ}{a}\right)\left(2,a^2\right)\left(3,a^3\right)$

fcx)=bx

Characteristics of Exponential Functions

- The domain of $f(x) = b^x$ consists of all real numbers. The range of $f(x) = b^x$ consists of all positive real numbers.
- The graphs of all exponential functions pass through the point (0, 1) because $f(0) = b^0 = 1$.
- If b > 1, $f(x) = b^x$ has a graph that goes up to the right and is an increasing function.
- If 0 < b < 1, $f(x) = b^x$ has a graph that goes down to the right and is a decreasing function.
- $f(x) = b^x$ is a one-to-one function and has an inverse that is a function.
- The graph of $f(x) = b^x$ approaches but does not cross the x-axis. The x-axis is a horizontal asymptote.

• Domain: $D: \{x \in \mathbb{R}\}$

• Range: $R:\{y\in\mathbb{R}\mid y>0\}$

• Horizontal asymptote: y = 0

• *y*-intercept: (0, 1)

Graph both functions on one set of axes.

19.
$$f(x) = 4^x$$
 and $g(x) = 7^x$

$$g(x) = 7$$

20. $f(x) = \left(\frac{3}{4}\right)^x$ and $g(x) = 1.5^x$

Keypoints
$$(-2, \frac{1}{a^2})(-1, \frac{1}{a})(0, 1)(1, a)(2, a^2)$$

$$(-2, \frac{16}{4})(-1, \frac{1}{3})(0, 1)(1, \frac{3}{4})(2, \frac{9}{16})$$

MPLE 3 Identifying Graphs of Exponential Functions

the exponential function $f(x) = a^x$ whose graph is given.

$$f(x) = a^{x}$$

$$f(x) = a^{x}$$

$$25 = a^{x}$$

$$5 = a^{2}$$

$$f(x)=a^{x}$$

21–24 ■ Exponential Functions from a Graph Find the exponential function $f(x) = a^x$ whose graph is given.

The graphs of some functions can be constructed by translating, stretching and reflecting another graph or by combining these techniques. $f(x) = 0^{x}$

$$f(x) = a^{x}$$

$$d = a^{2}$$

$$d$$

$$f(x) = a^{x}$$

$$f(x) = a^{x}$$

$$8 = a^{-3}$$

$$2^{3} = a^{-3}$$

$$(\frac{1}{2})^{-3} = a^{-3}$$

$$(x) = a^{x} = \frac{1}{2}$$